This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378715 #8 Dec 08 2024 02:48:13 %S A378715 2,7,0,6,6,9,4,6,4,5,4,7,9,2,2,8,7,8,5,6,2,5,8,6,4,4,3,8,3,0,6,8,2,8, %T A378715 0,4,5,6,9,8,4,4,5,4,5,5,5,7,1,7,1,3,1,9,1,2,4,4,6,3,9,9,4,2,6,1,1,6, %U A378715 0,6,9,9,3,3,2,9,9,0,5,8,4,7,8,6,4,1,0,1,8,3 %N A378715 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis dodecahedron. %C A378715 The disdyakis dodecahedron is the dual polyhedron of the truncated cuboctahedron (great rhombicuboctahedron). %H A378715 Paolo Xausa, <a href="/A378715/b378715.txt">Table of n, a(n) for n = 1..10000</a> %H A378715 Wikipedia, <a href="https://en.wikipedia.org/wiki/Disdyakis_dodecahedron">Disdyakis dodecahedron</a>. %F A378715 Equals arccos(-(71 + 12*sqrt(2))/97) = arccos(-(71 + 12*A002193)/97). %e A378715 2.7066946454792287856258644383068280456984454555717... %t A378715 First[RealDigits[ArcCos[-(71 + 12*Sqrt[2])/97], 10, 100]] (* or *) %t A378715 First[RealDigits[First[PolyhedronData["DisdyakisDodecahedron", "DihedralAngles"]], 10, 100]] %Y A378715 Cf. A378712 (surface area), A378713 (volume), A378714 (inradius), A378393 (midradius). %Y A378715 Cf. A177870, A195698 and A195702 (dihedral angles of a truncated cuboctahedron (great rhombicuboctahedron)). %Y A378715 Cf. A002193. %K A378715 nonn,cons,easy %O A378715 1,1 %A A378715 _Paolo Xausa_, Dec 07 2024