A378717 Products of 4 distinct prime numbers (or tetraprimes) that are deficient.
1155, 1365, 1785, 1995, 2145, 2415, 2618, 2805, 2926, 3003, 3045, 3094, 3135, 3255, 3315, 3458, 3542, 3705, 3795, 3885, 3910, 3927, 4186, 4305, 4370, 4389, 4466, 4485, 4515, 4522, 4641, 4774, 4785, 4810, 4845, 4862, 4930, 4935, 5005, 5115, 5187, 5270, 5278, 5313, 5330, 5434, 5474, 5510, 5565, 5590
Offset: 1
Keywords
Examples
1155 is a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+11+15+21+33+35+55+77+105+165+231+385=1149). 1365 is a term because 1365=3*5*7*13 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+13+15+21+35+39+65+91+105+195+273+455=1323).
Programs
-
Mathematica
q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) < 2]; Select[Range[6000], q] (* Amiram Eldar, Dec 05 2024 *)
-
PARI
catpr(~v, lim, mult, startAt)=forprime(p=startAt,lim\mult, listput(v,mult*p)) list(lim)=my(v=List()); forprime(p=3,sqrtnint(lim\=1,4), forprime(q=p+2,sqrtnint(lim\p,3), forprime(r=q+2,sqrtint(lim\p\q), catpr(~v,lim,p*q*r, r+2)))); forprime(p=11,sqrtnint(lim\2,3), forprime(q=13,sqrtint(lim\2\p), catpr(~v, lim, 2*p*q, q+2))); forprime(p=13,sqrtint(lim\14), catpr(~v,lim,14*p,p+2)); forprime(p=19,sqrtint(lim\10), catpr(~v,lim, 10*p, p+2)); catpr(~v, lim, 154, 17); catpr(~v, lim, 110, 59); catpr(~v, lim, 130, 37); catpr(~v, lim, 170, 23); Set(v) \\ Charles R Greathouse IV, Dec 06 2024
Formula
a(n) ~ A046390(n) ~ A046386(n) ~ A014613(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, Dec 06 2024