cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378717 Products of 4 distinct prime numbers (or tetraprimes) that are deficient.

Original entry on oeis.org

1155, 1365, 1785, 1995, 2145, 2415, 2618, 2805, 2926, 3003, 3045, 3094, 3135, 3255, 3315, 3458, 3542, 3705, 3795, 3885, 3910, 3927, 4186, 4305, 4370, 4389, 4466, 4485, 4515, 4522, 4641, 4774, 4785, 4810, 4845, 4862, 4930, 4935, 5005, 5115, 5187, 5270, 5278, 5313, 5330, 5434, 5474, 5510, 5565, 5590
Offset: 1

Views

Author

Massimo Kofler, Dec 05 2024

Keywords

Examples

			1155 is a term because 1155=3*5*7*11 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+11+15+21+33+35+55+77+105+165+231+385=1149).
1365 is a term because 1365=3*5*7*13 is the product of four distinct primes and it is larger than the sum of its proper divisors (1+3+5+7+13+15+21+35+39+65+91+105+195+273+455=1323).
		

Crossrefs

Intersection of A005100 and A046386. A046390 is a subsequence.
Cf. A378480.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1, 1, 1} && Times @@ (1 + 1/f[[;; , 1]]) < 2]; Select[Range[6000], q] (* Amiram Eldar, Dec 05 2024 *)
  • PARI
    catpr(~v, lim, mult, startAt)=forprime(p=startAt,lim\mult, listput(v,mult*p))
    list(lim)=my(v=List()); forprime(p=3,sqrtnint(lim\=1,4), forprime(q=p+2,sqrtnint(lim\p,3), forprime(r=q+2,sqrtint(lim\p\q), catpr(~v,lim,p*q*r, r+2)))); forprime(p=11,sqrtnint(lim\2,3), forprime(q=13,sqrtint(lim\2\p), catpr(~v, lim, 2*p*q, q+2))); forprime(p=13,sqrtint(lim\14), catpr(~v,lim,14*p,p+2)); forprime(p=19,sqrtint(lim\10), catpr(~v,lim, 10*p, p+2)); catpr(~v, lim, 154, 17); catpr(~v, lim, 110, 59); catpr(~v, lim, 130, 37); catpr(~v, lim, 170, 23); Set(v) \\ Charles R Greathouse IV, Dec 06 2024

Formula

a(n) ~ A046390(n) ~ A046386(n) ~ A014613(n) ~ 6n log n / (log log n)^3. - Charles R Greathouse IV, Dec 06 2024