A378727 The total number of fires in a rooted undirected infinite 4-ary tree with a self-loop at the root, when the chip-firing process starts with (4^n-1)/3 chips at the root.
0, 1, 10, 67, 380, 1973, 9710, 46119, 213600, 970905, 4349650, 19262731, 84507460, 367855997, 1590728630, 6840133103, 29269406760, 124713124449, 529394487450, 2239745908435, 9447655468300, 39745309211461, 166799986198910, 698474942207927, 2918999758480880, 12176398992520233, 50707195804467810
Offset: 1
Links
- Yifan Xie, Table of n, a(n) for n = 1..2000
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 15.
- Wikipedia, Chip-firing game.
- Index entries for linear recurrences with constant coefficients, signature (10,-33,40,-16).
Programs
-
Mathematica
Table[((3 n - 5) 4^n + 3 n + 5)/27, {n, 30}]
Formula
a(n) = ((3*n - 5)*4^n + 3*n + 5)/27.
Comments