This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378732 #11 Dec 06 2024 11:10:35 %S A378732 1,4,10,36,155,704,3384,16844,86097,449344,2384170,12822556,69743953, %T A378732 382982940,2120323014,11822279232,66327376437,374162700460, %U A378732 2120999728610,12075668658000,69021358842795,395909382981572,2278286453089574,13149207655326372,76096242994616990 %N A378732 G.f. A(x) satisfies A(x) = ( 1 + x / (1 - x*A(x)) )^4. %F A378732 G.f.: A(x) = (1 + x*B(x))^4 where B(x) is the g.f. of A364743. %F A378732 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). %o A378732 (PARI) a(n, r=4, s=1, t=0, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); %Y A378732 Cf. A364743, A371612, A378731. %Y A378732 cf. A365118, A365119. %K A378732 nonn %O A378732 0,2 %A A378732 _Seiichi Manyama_, Dec 05 2024