cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378756 Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.

This page as a plain text file.
%I A378756 #7 Dec 15 2024 21:09:28
%S A378756 1,0,0,0,2,-2,3,0,3,-6,7,0,9,-8,-6,0,14,-6,15,0,-5,-16,18,0,4,-20,-2,
%T A378756 0,24,14,25,0,-12,-30,-15,0,33,-32,-18,0,37,12,38,0,-12,-38,41,0,14,
%U A378756 -8,-30,0,48,4,-33,0,-30,-50,53,0,55,-52,-27,0,-38,26,63,0,-33,32,66,0,69,-68,-6,0,-38,38,73,0,7,-76,78
%N A378756 Dirichlet convolution of A046692 and A005187, where A046692 is the Dirichlet inverse of sigma.
%H A378756 Antti Karttunen, <a href="/A378756/b378756.txt">Table of n, a(n) for n = 1..20000</a>
%H A378756 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H A378756 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A378756 a(n) = Sum_{d|n} A046692(d)*A005187(n/d).
%o A378756 (PARI)
%o A378756 A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
%o A378756 A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };
%o A378756 A378756(n) = sumdiv(n,d,A046692(d)*A005187(n/d));
%Y A378756 Cf. A005187, A046692, A378757 (Dirichlet inverse).
%Y A378756 Cf. also A294898.
%K A378756 sign
%O A378756 1,5
%A A378756 _Antti Karttunen_, Dec 15 2024