This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378760 #27 Jan 26 2025 09:06:10 %S A378760 0,1,2,3,3,4,4,5,5,5,5,6,6,7,6,6,7,8,7,8,7,7,7,8,8,8,8,8,8,9,8,9,8,8, %T A378760 9,9,9,10,9,9,9,10,9,10,9,9,9,10,9,10,10,10,10,11,10,10,10,10,10,11, %U A378760 10,11,10,10,10,11,10,11,10,10,11,12,11,12,11,11,11,12,11,12,11,11,11,12,11,12,11,11,11,12,11,12,11,11,11,12,12,13,11,11 %N A378760 Smallest sum b_1 + .. + b_k among the sequences of positive integers b_1, b_2, ..., b_k such that 1 + b_1*(1 + b_2*(...(1 + b_k) ... )) = n. %C A378760 Among rooted trees with n vertices in which vertices at depth level i-1 all have b_i children each (generalized Bethe trees), a(n) is the smallest sum of those numbers of children. %C A378760 There are A003238(n) trees of this type (and sequences of b_i). %H A378760 Matthieu Pluntz, <a href="/A378760/b378760.txt">Table of n, a(n) for n = 1..20000</a> %F A378760 a(1) = 0; a(n+1) = min_{k divides n} (k + a(n/k)). %e A378760 a(5) = 3 is reached by b_1 = 2, b_2 = 1. 5 = 1 + b_1*(1 + b_2), 3 = b_1 + b_2. %p A378760 a:= proc(n) option remember; `if`(n=1, 0, min( %p A378760 seq((n-1)/d+a(d), d=numtheory[divisors](n-1)))) %p A378760 end: %p A378760 seq(a(n), n=1..100); # _Alois P. Heinz_, Dec 06 2024 %t A378760 a[n_] := a[n] = If[n == 1, 0, Min[Table[(n-1)/d + a[d], {d, Divisors[n-1]}]]]; %t A378760 Table[a[n], {n, 1, 100}](* _Jean-François Alcover_, Jan 26 2025, after _Alois P. Heinz_ *) %o A378760 (R) %o A378760 a = rep(0,N) %o A378760 for(n in 1:(N-1)){ %o A378760 divs = numbers::divisors(n) %o A378760 a[n+1] = min(divs + a[n/divs]) %o A378760 } %Y A378760 Cf. A003238. %K A378760 easy,nonn %O A378760 1,3 %A A378760 _Matthieu Pluntz_, Dec 06 2024