This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378768 #16 Dec 10 2024 09:58:47 %S A378768 1296,5184,10000,11664,20736,38416,40000,46656,50625,82944,104976, %T A378768 153664,160000,186624,194481,234256,250000,331776,419904,455625, %U A378768 456976,614656,640000,746496,810000,937024,944784,1000000,1185921,1265625,1327104,1336336,1500625,1679616 %N A378768 Squares of powerful numbers that are not prime powers. %C A378768 Contained in A286708, which is a proper subset of A126706. %H A378768 Michael De Vlieger, <a href="/A378768/b378768.txt">Table of n, a(n) for n = 1..10000</a> %F A378768 a(n) = A286708(n)^2. %F A378768 Intersection of A000290 and A286708. %F A378768 Intersection of A000290 and A372695. %F A378768 Sum_{n>=1} 1/a(n) = zeta(4)*zeta(6)/zeta(12) - Sum_{p prime} (1/(p^4-p^2)) - 1 = 0.0013772572536044025109... . - _Amiram Eldar_, Dec 10 2024 %t A378768 With[{nn = 2000}, Select[Rest@ Union[Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}] ], Not@*PrimePowerQ]^2] %o A378768 (Python) %o A378768 from math import isqrt %o A378768 from sympy import integer_nthroot, primepi, mobius %o A378768 def A378768(n): %o A378768 def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A378768 def bisection(f, kmin=0, kmax=1): %o A378768 while f(kmax) > kmax: kmax <<= 1 %o A378768 while kmax-kmin > 1: %o A378768 kmid = kmax+kmin>>1 %o A378768 if f(kmid) <= kmid: %o A378768 kmax = kmid %o A378768 else: %o A378768 kmin = kmid %o A378768 return kmax %o A378768 def f(x): %o A378768 c, l = n+x, 0 %o A378768 j = isqrt(x) %o A378768 while j>1: %o A378768 k2 = integer_nthroot(x//j**2, 3)[0]+1 %o A378768 w = squarefreepi(k2-1) %o A378768 c -= j*(w-l) %o A378768 l, j = w, isqrt(x//k2**3) %o A378768 c -= squarefreepi(integer_nthroot(x, 3)[0])-l %o A378768 return c+1+sum(primepi(integer_nthroot(x, k)[0]) for k in range(2, x.bit_length())) %o A378768 return bisection(f, n, n)**2 # _Chai Wah Wu_, Dec 08 2024 %Y A378768 Cf. A000290, A001694, A126706, A286708, A372695. %Y A378768 Cf. A013662, A013664, A013670. %K A378768 nonn,easy %O A378768 1,1 %A A378768 _Michael De Vlieger_, Dec 06 2024