A378769 Intersection of A375055 and A376936.
5400, 9000, 10584, 10800, 13500, 16200, 18000, 21168, 21600, 24696, 26136, 27000, 31752, 32400, 36000, 36504, 37044, 40500, 42336, 43200, 45000, 48600, 49000, 49392, 52272, 54000, 62424, 63504, 64800, 67500, 68600, 72000, 73008, 74088, 77976, 78408, 81000, 84672
Offset: 1
Examples
Table of the first 12 terms of this sequence, showing examples of types A, B, and C described in Comments. n a(n) Factors of a(n) Type A Type B Type C ---------------------------------------------------------------- 1 5400 2^3 * 3^3 * 5^2 24 * 225 4 * 1350 60 * 90 2 9000 2^3 * 3^2 * 5^3 18 * 500 4 * 2250 60 * 150 3 10584 2^3 * 3^3 * 7^2 24 * 441 4 * 2646 84 * 126 4 10800 2^4 * 3^3 * 5^2 48 * 225 8 * 1350 90 * 120 5 13500 2^2 * 3^3 * 5^3 12 * 1125 9 * 1500 90 * 150 6 16200 2^3 * 3^4 * 5^2 24 * 675 4 * 4050 60 * 270 7 18000 2^4 * 3^2 * 5^3 18 * 1000 8 * 2250 120 * 150 8 21168 2^4 * 3^3 * 7^2 48 * 441 8 * 2646 126 * 168 9 21600 2^5 * 3^3 * 5^2 50 * 432 8 * 2700 90 * 240 10 24696 2^3 * 3^2 * 7^3 18 * 1372 4 * 6174 84 * 294 11 26136 2^3 * 3^3 * 11^2 24 * 1089 4 * 6534 132 * 198 12 27000 2^3 * 3^3 * 5^3 24 * 1125 4 * 6750 60 * 450
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Listing of select divisor pairs of a(n), n = 1..16, showing divisor pairs of type A in light gray, type B in blue and gold, and type C in black.
Programs
-
Mathematica
s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[2^16], Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; Select[s, PrimeOmega[#] > PrimeNu[#] > 2 &]
Formula
This sequence is { k : rad(k)^2 | k, bigomega(k) > omega(k) > 2, p^3 | k and q^3 | k for distinct primes p, q }.
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - (15/Pi^2) * (1 + Sum_{prime} 1/((p-1)*(p^2+1))) - ((Sum_{p prime} (1/(p^2*(p-1))))^2 - Sum_{p prime} (1/(p^4*(p-1)^2)))/2 = 0.0025524144364532126894... . - Amiram Eldar, Dec 21 2024
Comments