cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378778 a(n) = n^2 * 2^n * binomial(3*n, n).

Original entry on oeis.org

0, 6, 240, 6048, 126720, 2402400, 42771456, 729308160, 12049956864, 194372006400, 3076609536000, 47959947509760, 738269547724800, 11245075661094912, 169748150676357120, 2542638555345715200, 37830087271621066752, 559525260959878348800, 8232406073859904634880, 120560661522092497305600
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 * 2^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n^2 * 2^n * binomial(3*n, n);

Formula

a(n) = A007758(n) * A005809(n).
a(n) = n^2 * A228484(n).
a(n) = n * A378780(n).
a(n) == 0 (mod 6).
Sum_{n>=1} 1/a(n) = Pi^2/24 - log(2)^2/2 (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005).