cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378780 a(n) = n * 2^n * binomial(3*n, n).

Original entry on oeis.org

0, 6, 120, 2016, 31680, 480480, 7128576, 104186880, 1506244608, 21596889600, 307660953600, 4359995228160, 61522462310400, 865005820084224, 12124867905454080, 169509237023047680, 2364380454476316672, 32913250644698726400, 457355892992216924160, 6345297974846973542400
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

References

  • Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Natick, MA, 2004. See p. 26.

Crossrefs

Programs

  • Mathematica
    a[n_] := n * 2^n * Binomial[3*n, n]; Array[a, 25, 0]
  • PARI
    a(n) = n * 2^n * binomial(3*n, n);

Formula

a(n) = A036289(n) * A005809(n).
a(n) = n * A228484(n).
a(n) == 0 (mod 6).
Sum_{n>=1} 1/a(n) = Pi/10 - log(2)/5 (Borwein et al., 2004; Borwein and Girgensohn, 2005; Batir, 2005).