This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378802 #11 Dec 08 2024 02:35:24 %S A378802 0,4,56,660,7280,77520,807576,8288280,84146400,847289520,8476605280, %T A378802 84362730452,836022413616,8255176274800,81266247493200, %U A378802 797911337890800,7816430993273280,76417576884236016,745777615780501920,7266758081613043600,70706322844243486400,687103929058903836480 %N A378802 a(n) = n * binomial(4*n, n). %H A378802 Amiram Eldar, <a href="/A378802/b378802.txt">Table of n, a(n) for n = 0..500</a> %H A378802 Necdet Batir and Anthony Sofo, <a href="http://dx.doi.org/10.1016/j.amc.2013.05.053">On some series involving reciprocals of binomial coefficients</a>, Appl. Math. Comp., Vol. 220 (2013), pp. 331-338. %F A378802 a(n) = n * A005810(n). %F A378802 a(n) = A374522(n) + n. %F A378802 a(n) == 0 (mod 4). %F A378802 Sum_{n>=1} 1/a(n) = A225847. %F A378802 Sum_{n>=1} (-1)^n/a(n) = A229703. %t A378802 a[n_] := n * Binomial[4*n, n]; Array[a, 25, 0] %o A378802 (PARI) a(n) = n * binomial(4*n, n); %Y A378802 Cf. A005810, A225847, A229703, A374522. %K A378802 nonn,easy %O A378802 0,2 %A A378802 _Amiram Eldar_, Dec 07 2024