cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378806 Decimal expansion of Sum_{k>=1} 1/binomial(4*k, k).

Original entry on oeis.org

2, 9, 0, 8, 8, 2, 0, 7, 1, 5, 2, 1, 2, 8, 7, 2, 1, 2, 7, 6, 2, 5, 9, 7, 2, 5, 6, 6, 8, 6, 8, 1, 0, 3, 5, 7, 7, 3, 3, 6, 8, 1, 7, 6, 1, 6, 7, 6, 0, 9, 7, 9, 2, 7, 5, 8, 2, 3, 7, 9, 3, 5, 9, 2, 6, 2, 2, 8, 4, 8, 1, 2, 4, 6, 8, 0, 2, 5, 4, 2, 5, 5, 0, 5, 5, 9, 3, 3, 9, 1, 8, 9, 7, 1, 6, 4, 9, 5, 6, 0, 3, 0, 3, 3, 4
Offset: 0

Views

Author

Amiram Eldar, Dec 07 2024

Keywords

Examples

			0.29088207152128721276259725668681035773368176167609...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[HypergeometricPFQ[{1, 4/3, 5/3, 2}, {5/4, 3/2, 7/4}, 27/256] / 4, 10, 120][[1]]

Formula

Equals 4F3(1, 4/3, 5/3, 2; 5/4, 3/2, 7/4; 27/256) / 4, where 4F3 is a generalized hypergeometric function.
Equals 27*c^2/((c^2-4)*(2*c^2+1)^2) + (3*c*(c^2-1)*(2*c^2-1)/(2*(2*c^2+1)^3)) * log((c-1)/(c+1)) + (3*(c^2-1)*(2*c^4-2*c^3-7*c^2-3*c+1)/(4*c*(2*c^2+1)^3)) * (c/(c+2))^(3/2) * arctan(2*sqrt(c^2+2*c)/(c^2+2*c-1)) + (3*(c^2-1)*(2*c^4+2*c^3-7*c^2+3*c+1)/(4*c*(2*c^2+1)^3)) * (c/(c-2))^(3/2) * arctan(2*sqrt(c^2-2*c)/(c^2-2*c-1)), where c = sqrt(1 + (16/sqrt(3))*cos(arctan(sqrt(229/27))/3)) (Batir and Sofo, 2013, p. 337, Example 9).