cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378810 Number of horizontal steps in all peak and valleyless Motzkin meanders of length n.

This page as a plain text file.
%I A378810 #10 Dec 09 2024 06:02:53
%S A378810 0,1,4,13,39,110,300,801,2106,5473,14097,36056,91697,232108,585212,
%T A378810 1470557,3684682,9209417,22967446,57167993,142051519,352427720,
%U A378810 873157093,2160579740,5340150100,13185150903,32523933395,80156852042,197391001215,485723767342
%N A378810 Number of horizontal steps in all peak and valleyless Motzkin meanders of length n.
%C A378810 Motzkin meanders are lattice paths starting at (0,0) with steps Up (0,1), Horizontal (1,0), and Down (0,-1) that stay weakly above the x-axis. Peak and valleyless Motzkin meanders avoid UD and DU.
%F A378810 a(n) = Sum_{k=1..n} A378809(n,k)*k.
%e A378810 For n = 3 we have meanders, UUU, UUH, UHU, UHD, HUU, UHH, HHU, HUH, HHH; giving a total of a(3) = 13 H steps.
%o A378810 (PARI)
%o A378810 A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
%o A378810 A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); h}
%o A378810 P_xy(N) = Pol(A_xy(N), {x})
%o A378810 A_x(N) = {my(px = deriv(P_xy(N),y), y=1); Vecrev(eval(px))}
%o A378810 A_x(20)
%Y A378810 Cf. A005773, A132894, A308435, A378809.
%K A378810 nonn,easy
%O A378810 0,3
%A A378810 _John Tyler Rascoe_, Dec 08 2024