This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378819 #6 Jan 07 2025 10:21:16 %S A378819 0,1,1,1,1,4,1,1,1,3,1,4,1,3,4,1,1,4,1,3,3,3,1,4,1,3,1,3,1,8,1,1,3,3, %T A378819 4,4,1,3,3,3,1,7,1,3,4,3,1,4,1,3,3,3,1,4,3,3,3,3,1,8,1,3,3,1,3,7,1,3, %U A378819 3,7,1,4,1,3,4,3,4,7,1,3,1,3,1,7,3,3,3,3 %N A378819 a(n) is the number of distinct nondegenerate triangles whose sides are prime factors of n. %C A378819 A prime factor can be used for several sides. %C A378819 A nondegenerate triangle is a triangle whose sides (u, v, w) are such that u + v > w, v + w > u and u + w > v. %H A378819 Felix Huber, <a href="/A378819/b378819.txt">Table of n, a(n) for n = 1..10000</a> %H A378819 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triangle_inequality">Triangle Inequality</a> %F A378819 a(n) = a(A007947(n)). %F A378819 a(p^k) = 1 for prime powers p^k (p prime, k >= 1). %e A378819 a(10) = 3 because there are the 3 distinct nondegenerate triangles (2, 2, 2), (2, 5, 5), (5, 5, 5) whose sides are prime factors of 10. Since 2 + 2 < 5, (2, 2, 5) is not a triangle. %p A378819 A378819:=proc(n) %p A378819 local a,i,j,k,L; %p A378819 L:=NumberTheory:-PrimeFactors(n); %p A378819 a:=0; %p A378819 for i to nops(L) do %p A378819 for j from i to nops(L) do %p A378819 for k from j to nops(L) while L[k]<L[i]+L[j] do %p A378819 a:=a+1; %p A378819 od %p A378819 od %p A378819 od; %p A378819 return a %p A378819 end proc; %p A378819 seq(A378819(n),n=1..88); %Y A378819 Cf. A000040, A000961, A001221, A007947, A070088, A306678, A316841, A316842, A366398, A378820, A379033. %K A378819 nonn %O A378819 1,6 %A A378819 _Felix Huber_, Dec 27 2024