A378824 Decimal expansion of the volume of a pentagonal icositetrahedron with unit shorter edge length.
3, 5, 6, 3, 0, 2, 0, 2, 0, 1, 2, 0, 7, 1, 2, 8, 3, 2, 2, 3, 9, 6, 7, 7, 4, 1, 6, 3, 5, 1, 9, 6, 3, 6, 9, 0, 3, 5, 3, 8, 6, 6, 9, 1, 5, 2, 1, 8, 6, 4, 6, 1, 7, 7, 5, 8, 4, 3, 8, 4, 6, 6, 6, 0, 6, 6, 9, 5, 8, 4, 6, 7, 4, 7, 4, 0, 6, 1, 5, 3, 0, 1, 0, 9, 8, 8, 4, 0, 5, 6
Offset: 2
Examples
35.63020201207128322396774163519636903538669152186...
Links
- Paolo Xausa, Table of n, a(n) for n = 2..10000
- Eric Weisstein's World of Mathematics, Pentagonal Icositetrahedron.
- Wikipedia, Pentagonal icositetrahedron.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Root[#^6 - 1269*#^4 - 649*#^2 - 121 &, 2], 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentagonalIcositetrahedron", "Volume"], 10, 100]]
Formula
Equals 4*(1 + s)^3*(2 + 3*s)*sqrt(1 - 2*s)/((1 + s)*(1 - 4*s^2)), where s = (A058265 - 1)/2.
Equals the positive real root of x^6 - 1269*x^4 - 649*x^2 - 121.
Comments