This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378829 #11 Dec 14 2024 07:16:38 %S A378829 1,-2,5,-13,30,-74,202,-616,2126,-7828,29366,-110398,414214,-1556848, %T A378829 5892713,-22524354,86954484,-338421674,1324660464,-5204326208, %U A378829 20498580511,-80907096678,320002290542,-1268500509496,5040195484362,-20073242195580,80120884387322,-320442284717582,1283939790460139 %N A378829 G.f. A(x) satisfies 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n. %C A378829 A signed version of A359673. %H A378829 Paul D. Hanna, <a href="/A378829/b378829.txt">Table of n, a(n) for n = 1..303</a> %F A378829 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas. %F A378829 (1) 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n. %F A378829 (2) 1 = Sum_{n=-oo..+oo} A(x)^n * (A(x)^n + 2*x)^(n-1). %F A378829 (3) 0 = Sum_{n=-oo..+oo} (-1)^n * (A(x)^n - 2*x)^(n-1). %F A378829 (4) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(2*n) * (A(x)^n + 2*x)^(n+1). %F A378829 (5) 1 = Sum_{n=-oo..+oo} A(x)^(n^2) / (1 - 2*x*A(x)^n)^n. %F A378829 (6) 1 = Sum_{n=-oo..+oo} A(x)^(n^2) / (1 + 2*x*A(x)^n)^(n+1). %F A378829 (7) 0 = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n*(n+1)) / (1 + 2*x*A(x)^n)^(n+1). %e A378829 G.f.: A(x) = x - 2*x^2 + 5*x^3 - 13*x^4 + 30*x^5 - 74*x^6 + 202*x^7 - 616*x^8 + 2126*x^9 - 7828*x^10 + 29366*x^11 - 110398*x^12 + ... %e A378829 where 1 = Sum_{n=-oo..+oo} (A(x)^n - 2*x)^n. %e A378829 SPECIFIC VALUES. %e A378829 A(t) = 1/6 at t = 0.24134833288352420167420358490093379236139061653959... %e A378829 where 1 = Sum_{n=-oo..+oo} (1/6^n - 2*t)^n. %e A378829 A(t) = 1/7 at t = 0.19473287649699543474178954182484954936895675300220... %e A378829 where 1 = Sum_{n=-oo..+oo} (1/7^n - 2*t)^n. %e A378829 A(t) = 1/8 at t = 0.16330047299490635761734791354706359079698287572429... %e A378829 where 1 = Sum_{n=-oo..+oo} (1/8^n - 2*t)^n. %e A378829 A(t) = exp(-Pi) at t = 0.04720243920412572796492634515550526365563452970121157309... %e A378829 where 1 = Sum_{n=-oo..+oo} (exp(-n*Pi) - 2*t)^n, %e A378829 also, 1 = Sum_{n=-oo..+oo} exp(-n^2*Pi) / (1 - 2*t*exp(-n*Pi))^n; %e A378829 compare to Sum_{n=-oo..+oo} exp(-n^2*Pi) = Pi^(1/4)/gamma(3/4). %e A378829 A(t) = exp(-2*Pi) at t = 0.001874436990256710694689538031391789940066981740061145959... %e A378829 where 1 = Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 2*t)^n, %e A378829 also, 1 = Sum_{n=-oo..+oo} exp(-2*n^2*Pi) / (1 - 2*t*exp(-2*n*Pi))^n; %e A378829 compare to Sum_{n=-oo..+oo} exp(-2*n^2*Pi) = Pi^(1/4)/gamma(3/4) * sqrt(2+sqrt(2))/2. %e A378829 A(1/5) = 0.14570268760195709902234365534810153966906514204980... %e A378829 where 1 = Sum_{n=-oo..+oo} (A(1/5)^n - 2/5)^n. %e A378829 A(1/6) = 0.12698642862956730423090954809810167590805619510041... %e A378829 where 1 = Sum_{n=-oo..+oo} (A(1/6)^n - 1/3)^n. %e A378829 A(1/7) = 0.11253270334433369822784652362071431711460474251926... %e A378829 A(1/8) = 0.10104551587569245791494155789285565556961920656039... %e A378829 where 1 = Sum_{n=-oo..+oo} (A(1/8)^n - 1/4)^n. %o A378829 (PARI) {a(n) = my(V=[0,1],A); for(i=1, n, V=concat(V, 0); A=Ser(V); %o A378829 V[#V] = polcoef( -sum(m=-#V, #V, (A^m - 2*x)^m ), #V-1)/2); V[n+1]} %o A378829 for(n=1, 30, print1(a(n), ", ")) %Y A378829 Cf. A355868, A359673. %K A378829 sign %O A378829 1,2 %A A378829 _Paul D. Hanna_, Dec 13 2024