This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378842 #17 Dec 22 2024 13:08:51 %S A378842 1,1,5,154,127459,1218599617,2319241469466200,32824171395278825785183, %T A378842 115384552858168166552304749413033, %U A378842 22529589324775724210737089575811718669447945,1255772217551224641521320538899160332818484462756697922572,885355014578065534254256068634855343582928219947780981811219956595305584 %N A378842 Number of compositions (ordered partitions) of n into reciprocals of positive integers <= n. %H A378842 Alois P. Heinz, <a href="/A378842/b378842.txt">Table of n, a(n) for n = 0..15</a> %e A378842 a(2) = 5 because we have [1/2, 1/2, 1/2, 1/2], [1/2, 1/2, 1], [1/2, 1, 1/2], [1, 1/2, 1/2] and [1, 1]. %p A378842 b:= proc(n, r) option remember; `if`(r=0, 1, %p A378842 add(`if`(r*j<1, 0, b(n, r-1/j)), j=1..n)) %p A378842 end: %p A378842 a:= n-> b(n$2): %p A378842 seq(a(n), n=0..10); # _Alois P. Heinz_, Dec 12 2024 %o A378842 (Python) %o A378842 from functools import lru_cache %o A378842 from fractions import Fraction %o A378842 def A378842(n): %o A378842 @lru_cache(maxsize=None) %o A378842 def f(r): return 1 if r==0 else sum(f(r-Fraction(1,j)) for j in range(int(Fraction(1,r))+(r.numerator!=1),n+1)) %o A378842 return f(n) # _Chai Wah Wu_, Dec 14 2024 %Y A378842 Cf. A020473, A038034, A208480. %K A378842 nonn %O A378842 0,3 %A A378842 _Ilya Gutkovskiy_, Dec 09 2024 %E A378842 More terms from _Alois P. Heinz_, Dec 12 2024