This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378843 #15 Dec 16 2024 02:15:11 %S A378843 1,1,1,1,0,1,7,1,0,0,1,1,24,1,1,1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,151,1,0, %T A378843 1,1,1,0,1,1,1,0,1,31,1,0,0,1,1,0,0,0,1,0,1,0,1,0,1,1,1,864,1,1,0,0,1, %U A378843 127,1,0,1,1,1,0,1,1,0,0,1,7,1,0 %N A378843 Number of compositions (ordered partitions) of n into distinct squarefree divisors of n. %C A378843 From _Robert Israel_, Dec 15 2024: (Start) %C A378843 If n is squarefree, a(n) >= 1, as [n] is a composition. %C A378843 If n = b * c where b and c are coprime and c is squarefree, then a(n) >= a(b), as for any composition C of b into distinct squarefree divisors, multiplying each element of C by c gives a composition of n into distinct squarefree divisors. (End) %H A378843 Robert Israel, <a href="/A378843/b378843.txt">Table of n, a(n) for n = 0..10000</a> %e A378843 a(6) = 7 because we have [6], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3]. %e A378843 a(12) = 24 because we have [6, 3, 2, 1] and 4! = 24 permutations. %p A378843 ptns:= proc(S,n) option remember; %p A378843 # subsets of S with sum n %p A378843 local m,s; %p A378843 if convert(S,`+`) < n then return {} fi; %p A378843 if n = 0 then return {{}} fi; %p A378843 s:= max(S); %p A378843 if s > n then return procname(select(`<=`,S,n),n) fi; %p A378843 map(t -> t union {s}, procname(S minus {s},n-s)) union procname(S minus {s}, n) %p A378843 end proc: %p A378843 sfd:= proc(n) map(convert,combinat:-powerset(numtheory:-factorset(n)),`*`) end proc: %p A378843 f:= proc(n) local t; %p A378843 add((nops(t))!, t = ptns(sfd(n),n)) %p A378843 end proc: %p A378843 map(f, [$0..100]); # _Robert Israel_, Dec 15 2024 %t A378843 a[n_] := Module[{d = Select[Divisors[n], SquareFreeQ]}, Total[(Length /@ Select[Subsets[d], Total[#] == n &])!]]; a[0] = 1; Array[a, 100, 0] (* _Amiram Eldar_, Dec 10 2024 *) %Y A378843 Cf. A005117, A087188, A225244, A225245, A284464, A331846, A331927. %K A378843 nonn %O A378843 0,7 %A A378843 _Ilya Gutkovskiy_, Dec 09 2024