cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378849 a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.

This page as a plain text file.
%I A378849 #18 Dec 18 2024 22:37:16
%S A378849 1,1,1,3,9,21,48,120,309,787,2011,5215,13652,35894,94823,251889,
%T A378849 672285,1801185,4842757,13064059,35349463,95912989,260896318,
%U A378849 711338596,1943690464,5321704006,14597781706,40112702176,110404515703,304338523999,840140172621,2322386563353
%N A378849 a(n) is the total number of paths starting at (0,0), ending at (n,0), consisting of steps (1,1), (1,0), (1,-2), and staying on or above y = -1.
%F A378849 a(n) = hypergeom([4/3, (1-n)/3, (2-n)/3, -n/3], [1/3, 3/2, 2], -27/4). - _Peter Luschny_, Dec 18 2024
%p A378849 a:= proc(n) option remember; `if`(n<4, [1$3, 3][n+1],
%p A378849       (2*(8*n^3+3*n^2-25*n-6)*a(n-1)-2*(n-1)*(12*n^2-9*n-10)*
%p A378849        a(n-2)+(43*n+13)*(n-1)*(n-2)*a(n-3)-31*(n-1)*(n-2)*
%p A378849         (n-3)*a(n-4))/(2*(2*n+3)*(n+3)*(n-2)))
%p A378849     end:
%p A378849 seq(a(n), n=0..31);  # _Alois P. Heinz_, Dec 09 2024
%o A378849 (PARI) a(n) = sum(k=0, floor(n/3), binomial(n, k*3)*binomial(3*k+1, k)/(k+1)) \\ _Thomas Scheuerle_, Dec 09 2024
%Y A378849 Cf. A071879, A116411, A378850.
%K A378849 nonn
%O A378849 0,4
%A A378849 _Emely Hanna Li Lobnig_, Dec 09 2024
%E A378849 More terms from _Alois P. Heinz_, Dec 09 2024