A378859 Achilles numbers that are abundant.
72, 108, 200, 288, 392, 432, 500, 648, 800, 864, 968, 972, 1152, 1352, 1372, 1568, 1800, 1944, 2000, 2592, 2700, 3200, 3456, 3528, 3872, 3888, 4000, 4500, 4608, 5000, 5292, 5400, 5408, 5488, 6272, 6912, 7200, 8712, 8748, 9000, 9248, 9800, 10368, 10584, 10800, 10976, 11552, 12168, 12348, 12500, 12800, 13068, 13500, 14112, 15488
Offset: 1
Keywords
Examples
72=2^3*3^2 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+8+9+12+18+24+36=123). 108=2^2*3^3 is a term because it is an Achilles number (powerful but imperfect, see A052486) and it is smaller than the sum of its proper divisors (1+2+3+4+6+9+12+18+27+36+54=172).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local F, E, t; F:= ifactors(n)[2]; E:= F[..,2]; min(E)>1 and igcd(op(E))=1 and mul((t[1]^(1+t[2])-1)/(t[1]-1), t = F) > 2*n end proc: select(filter, [$1..10^5]); # Robert Israel, Jan 28 2025
-
Mathematica
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; AllTrue[e, # > 1 &] && GCD @@ e == 1 && Times @@ ((p - 1/p^e)/(p - 1)) > 2]; Select[Range[16000], q] (* Amiram Eldar, Dec 09 2024 *)
Comments