A378879 a(n) = number of non-Pythagorean primes in the prime factorization of n (including multiplicities).
0, 1, 1, 2, 0, 2, 1, 3, 2, 1, 1, 3, 0, 2, 1, 4, 0, 3, 1, 2, 2, 2, 1, 4, 0, 1, 3, 3, 0, 2, 1, 5, 2, 1, 1, 4, 0, 2, 1, 3, 0, 3, 1, 3, 2, 2, 1, 5, 2, 1, 1, 2, 0, 4, 1, 4, 2, 1, 1, 3, 0, 2, 3, 6, 0, 3, 1, 2, 2, 2, 1, 5, 0, 1, 1, 3, 2, 2, 1, 4, 4, 1, 1, 4, 0, 2
Offset: 1
Examples
a(12) = 3 because 12 = 2*2*3, where 2 (with multiplicity 2) and 3 are non-Pythagorean primes.
Programs
-
Maple
A378879 := proc(n) local a,f ; a := 0 ; for f in ifactors(n)[2] do if op(1, f) mod 4 <> 1 then a := a+op(2, f) ; end if; end do: a ; end proc: seq(A378879(n),n=1..50) ; # R. J. Mathar, Jan 27 2025
-
Mathematica
f[{x_, y_}] := If[Mod[x, 4] == 1, y, -y]; s[n_] := Map[f, FactorInteger[n]]; p[n_] := {Total[Select[s[n], # > 0 &]], -Total[Select[s[n], # < 0 &]]}; p[1] = {0, 0}; t = Table[p[n], {n, 1, 135}] Map[First, t] (* A083025 *) Map[Last, t] (* A378879 *)
Formula
From R. J. Mathar, Jan 28 2025: (Start)
Totally additive with a(p) = 1 if p = 2 or p == 3 (mod 4), and a(p) = 0 if p == 1 (mod 4). - Amiram Eldar, Jun 09 2025