This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378882 #12 Dec 10 2024 05:56:32 %S A378882 1,3,15,97,717,5736,48340,422688,3799080,34881159,325750143, %T A378882 3084634305,29548452297,285825135183,2787990695931,27391816756281, %U A378882 270828413410413,2692692976016352,26904718314949776,270017389769189136,2720718671661444780,27513054621821846074 %N A378882 G.f. A(x) satisfies A(x) = ( 1 + x*A(x)/(1 - x*A(x)^(5/3)) )^3. %F A378882 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^(2/3)/(1 - x*A(x)^(5/3)) )^3. %F A378882 G.f. A(x) satisfies A(x) = 1 + x * A(x) * (1 + A(x)^(1/3) + A(x)^(5/3)). %F A378882 G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A378883. %F A378882 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). %o A378882 (PARI) a(n, r=3, s=1, t=3, u=5) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); %Y A378882 Cf. A349017, A378801, A378828. %Y A378882 Cf. A378883. %K A378882 nonn %O A378882 0,2 %A A378882 _Seiichi Manyama_, Dec 09 2024