cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378883 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x*A(x)^5).

This page as a plain text file.
%I A378883 #9 Dec 10 2024 05:57:30
%S A378883 1,1,4,24,171,1338,11109,96100,856762,7816616,72627241,684859147,
%T A378883 6537520290,63050669143,613441446154,6013687144000,59343220508344,
%U A378883 589004488233064,5876204912724812,58893312496308755,592682966496901253,5986771171677305889,60677419447552591497
%N A378883 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x*A(x)^5).
%F A378883 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^2/(1 - x*A(x)^5)).
%F A378883 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
%o A378883 (PARI) a(n, r=1, s=1, t=3, u=5) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
%Y A378883 Cf. A378882.
%K A378883 nonn
%O A378883 0,3
%A A378883 _Seiichi Manyama_, Dec 09 2024