This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378883 #9 Dec 10 2024 05:57:30 %S A378883 1,1,4,24,171,1338,11109,96100,856762,7816616,72627241,684859147, %T A378883 6537520290,63050669143,613441446154,6013687144000,59343220508344, %U A378883 589004488233064,5876204912724812,58893312496308755,592682966496901253,5986771171677305889,60677419447552591497 %N A378883 G.f. A(x) satisfies A(x) = 1 + x*A(x)^3/(1 - x*A(x)^5). %F A378883 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^2/(1 - x*A(x)^5)). %F A378883 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r). %o A378883 (PARI) a(n, r=1, s=1, t=3, u=5) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); %Y A378883 Cf. A378882. %K A378883 nonn %O A378883 0,3 %A A378883 _Seiichi Manyama_, Dec 09 2024