cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378886 The number of consecutive primes in the prime factorization of n starting from the smallest prime dividing n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 10 2024

Keywords

Comments

First differs from A300820 at n = 70 = 2 * 5 * 7: A300820(70) = 2 while a(70) = 1.

Examples

			a(42) = 2 since 42 = 2 * 3 * 7 and 2 and 3 are 2 consecutive primes.
a(28) = 1 since 28 = 2^2 * 7 and 3 is not a divisor of 28.
a(4095) = 3 since 4095 = 3^2 * 5 * 7 * 13 and 3, 5 and 7 are 3 consecutive primes.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{p = FactorInteger[n][[;; , 1]], c = 1, q}, q = p[[1]]; Do[q = NextPrime[q]; If[q == p[[i]], c++, Break[]], {i, 2, Length[p]}]; c]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n == 1, 0, my(p = factor(n)[,1], c = 1, q); q = p[1]; for(i = 2, #p, q = nextprime(q+1); if(q == p[i], c++, break)); c);

Formula

a(n) >= A276084(n).
a(n) <= A300820(n).
a(n) = A001221(n) if and only if n is in A073491.
a(n) >= 1 for n >= 2.
a(n) >= 2 if and only if n is in A378884.
a(n) >= 3 if and only if n is in A378885.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} k * (d(k) - d(k+1)) = 1.2630925015039..., where d(1) = 1 and d(k) = Sum_{i>=1} (Product_{j=1..i-1} (1-1/prime(j)))/(Product_{j=0..k-1} prime(i+j)), for k >= 2. d(k) is the asymptotic density of numbers m for which a(m) >= k.