cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378892 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^3).

This page as a plain text file.
%I A378892 #14 Dec 10 2024 09:03:14
%S A378892 1,1,5,37,322,3067,30951,325171,3519038,38959997,439177850,5023590609,
%T A378892 58163050071,680308820750,8026782091957,95419476630100,
%U A378892 1141762194395927,13740910664096101,166216043531507231,2019807368837970964,24644779751103948475,301818330734940817283
%N A378892 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^3).
%F A378892 G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x)^3)).
%F A378892 If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
%o A378892 (PARI) a(n, r=1, s=-1, t=6, u=3) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
%Y A378892 Cf. A001764, A271469, A363982, A364736, A364864.
%Y A378892 Cf. A378891.
%K A378892 nonn
%O A378892 0,3
%A A378892 _Seiichi Manyama_, Dec 10 2024