cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378900 Squares of numbers divisible by the squares of two distinct primes.

This page as a plain text file.
%I A378900 #17 Dec 21 2024 11:09:16
%S A378900 1296,5184,10000,11664,20736,32400,38416,40000,46656,50625,63504,
%T A378900 82944,90000,104976,129600,153664,156816,160000,186624,194481,202500,
%U A378900 219024,234256,250000,254016,291600,331776,345744,360000,374544,419904,455625,456976,467856,490000
%N A378900 Squares of numbers divisible by the squares of two distinct primes.
%C A378900 Also, the squares in A376936.
%C A378900 Proper subset of A378767, in turn a proper subset of A286708, the intersection of A001694 and A024619.
%C A378900 Numbers that have 3 kinds of coreful divisor pairs (d, k/d), d | k, i.e., rad(d) = rad(k/d) = rad(k) where rad = A007947. These kinds are described as follows:
%C A378900 Type A: d = k/d, which pertain to square k (in A000290).
%C A378900 Type B: d | k/d, d < k/d, which pertain to k in A320966, powerful numbers divisible by a cube.
%C A378900 Type C: neither d | k/d nor k/d | d, which pertain to k in A376936.
%C A378900 Since divisors d, k/d may either divide or not divide the other, there are no other cases.
%C A378900 In addition the following kinds of divisor pairs are also seen:
%C A378900 Type D: (d, k/d) such that d | k/d but there exists a factor Q | k/d that does not divide d. Then omega(d) < omega(k/d) = omega(k).
%C A378900 Type E: Nontrivial unitary divisor pairs (d, k/d) such that gcd(d, k/d) = 1, d > 1, k/d > 1. Let prime power factor p^m | k be such that m is maximized. Then set d = p^m and it is clear that for any k in A024619, there exists at least 1 nontrivial unitary divisor pair.
%H A378900 Michael De Vlieger, <a href="/A378900/b378900.txt">Table of n, a(n) for n = 1..10000</a>
%H A378900 Michael De Vlieger, <a href="/A378900/a378900.png">Listing of select divisor pairs of a(n)</a>, n = 1..12, showing divisor pairs of type A in light gray, type B in orange and purple, and type C in black.
%F A378900 a(n) = A036785(n)^2.
%F A378900 Sum_{n>=1} 1/a(n) = Pi^2/6 - (15/Pi^2) * (1 + Sum_{p prime} 1/(p^4-1)) = 0.0015294876575980711757... . - _Amiram Eldar_, Dec 21 2024
%e A378900 Let b = A036785.
%e A378900 Table of the first 12 terms of this sequence, showing examples of types A, B, and C of coreful pairs of divisors.
%e A378900    n    a(n)   Factors of a(n)    b(n)   Type B       Type C
%e A378900   -------------------------------------------------------------
%e A378900    1    1296   2^4  * 3^4          36    6 * 216      24 * 54
%e A378900    2    5184   2^6  * 3^4          72    6 * 864      48 * 108
%e A378900    3   10000   2^4  * 5^4         100   10 * 1000     40 * 250
%e A378900    4   11664   2^4  * 3^6         108    6 * 1944     24 * 486
%e A378900    5   20736   2^8  * 3^4         144    6 * 3456     54 * 384
%e A378900    6   32400   2^4  * 3^4 * 5^2   180   30 * 1080    120 * 270
%e A378900    7   38416   2^4  * 7^4         196   14 * 2744     56 * 686
%e A378900    8   40000   2^6  * 5^4         200   10 * 4000     80 * 500
%e A378900    9   46656   2^6  * 3^6         216    6 * 7776     48 * 972
%e A378900   10   50625   3^4  * 5^4         225   15 * 3375    135 * 375
%e A378900   11   63504   2^4  * 3^4 * 7^2   252   42 * 1512    168 * 378
%e A378900   12   82944   2^10 * 3^4         288    6 * 13824    54 * 1536
%t A378900 s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}],   IntegerQ@ Sqrt[#] &] &[500000];
%t A378900 Union@ Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]
%Y A378900 Cf. A000290, A001694, A007947, A024619, A036785, A126706, A286708, A320966, A376936, A378768.
%Y A378900 Cf. A013661, A082020.
%K A378900 nonn,easy
%O A378900 1,1
%A A378900 _Michael De Vlieger_, Dec 12 2024