A378908 Square array, read by descending antidiagonals, where each row n comprises the integers w >= 1 such that A000037(n)*w^2+4 is a square.
4, 24, 2, 140, 8, 1, 816, 30, 3, 4, 4756, 112, 8, 40, 6, 27720, 418, 21, 396, 96, 2, 161564, 1560, 55, 3920, 1530, 12, 12, 941664, 5822, 144, 38804, 24384, 70, 456, 6, 5488420, 21728, 377, 384120, 388614, 408, 17316, 120, 1, 31988856, 81090, 987, 3802396
Offset: 1
Examples
n=row index; x=nonsquare integer of index n (A000037(n)): n x T(n, k) ------+--------------------------------------------------------------------- 1 2 | 4, 24, 140, 816, 4756, 27720, 161564, ... 2 3 | 2, 8, 30, 112, 418, 1560, 5822, ... 3 5 | 1, 3, 8, 21, 55, 144, 377, ... 4 6 | 4, 40, 396, 3920, 38804, 384120, 3802396, ... 5 7 | 6, 96, 1530, 24384, 388614, 6193440, 98706426, ... 6 8 | 2, 12, 70, 408, 2378, 13860, 80782, ... 7 10 | 12, 456, 17316, 657552, 24969660, 948189528, 36006232404, ... 8 11 | 6, 120, 2394, 47760, 952806, 19008360, 379214394, ... 9 12 | 1, 4, 15, 56, 209, 780, 2911, ... 10 13 | 3, 33, 360, 3927, 42837, 467280, 5097243, ... 11 14 | 8, 240, 7192, 215520, 6458408, 193536720, 5799643192, ... 12 15 | 2, 16, 126, 992, 7810, 61488, 484094, ... 13 17 | 16, 1056, 69680, 4597824, 303386704, 20018924640, 1320945639536, ... 14 18 | 8, 272, 9240, 313888, 10662952, 362226480, 12305037368, ... ...
Crossrefs
Programs
-
PARI
row(n)={my(v=List()); for(t=3, oo, if((t^2-4)%x>0 || !issquare((t^2-4)/x), next); listput(v, sqrtint((t^2-4)/x)); break); listput(v, v[1]*sqrtint(v[1]^2*x+4)); while(#v<10, listput(v, v[#v]*(v[2]/v[1])-v[#v-1])); Vec(v)} for(n=1, 20, x=n+floor(1/2+sqrt(n)); print (n, " ", x, " ", row(n)))
Formula
For x = A000037(n) (nonsquare integer of index n):
If x is not the sum of 2 squares, then T(n, 1) = A048942(n); otherwise, T(n, 1) is a positive integer multiple of A048942(n).
For j in {-2, 1, 2, 4}, if x-j is a square (except 2-2=0^2 or 5-1=2^2), then T(n, 1) = (4/abs(j))*sqrt(x-j) and T(n, 2) = T(n, 1)^3/(4/abs(j)) + sign(j)*2*T(n, 1).
For j in {1, 4}, if x+j is a square, then T(n, 1) = 2/sqrt(4/j) and T(n, 2) = (4/j)*sqrt(x+j).
For k >= 2, T(n, k) = T(n, k-1)*sqrt(T(n, 1)^2*x+4) - [k>=3]*T(n, k-2).
Comments