This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378922 #12 Sep 03 2025 10:49:58 %S A378922 1,1,7,28,81,191,391,722,1233,1981,3031,4456,6337,8763,11831,15646, %T A378922 20321,25977,32743,40756,50161,61111,73767,88298,104881,123701,144951, %U A378922 168832,195553,225331,258391,294966,335297,379633,428231,481356,539281,602287,670663,744706,824721 %N A378922 Number of minimal edge cuts in the n-antiprism graph. %C A378922 The n-antiprism graph is defined for n >= 3. The sequence has been extended to n = 0 using the formula. - _Andrew Howroyd_, Jun 09 2025 %H A378922 Andrew Howroyd, <a href="/A378922/b378922.txt">Table of n, a(n) for n = 0..1000</a> %H A378922 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>. %H A378922 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCut.html">Minimal Edge Cut</a>. %H A378922 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A378922 From _Andrew Howroyd_, Jun 09 2025: (Start) %F A378922 a(n) = 1 + 2*n*(n-1) + n^2*(n-1)*(2*n-1)/6. %F A378922 a(n) = (2*n^4 - 3*n^3 + 13*n^2 - 12*n + 6)/6. (End) %F A378922 From _Elmo R. Oliveira_, Sep 03 2025: (Start) %F A378922 G.f.: (1 - 4*x + 12*x^2 - 7*x^3 + 6*x^4)/(1-x)^5. %F A378922 E.g.f.: (6 + 18*x^2 + 9*x^3 + 2*x^4)*exp(x)/6. %F A378922 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End) %o A378922 (PARI) a(n) = (2*n^4 - 3*n^3 + 13*n^2 - 12*n + 6)/6 \\ _Andrew Howroyd_, Jun 09 2025 %Y A378922 Cf. A359620. %K A378922 nonn,easy,changed %O A378922 0,3 %A A378922 _Eric W. Weisstein_, Dec 11 2024 %E A378922 a(0)-a(2) prepended and a(7) onwards from _Andrew Howroyd_, Jun 09 2025