cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378922 Number of minimal edge cuts in the n-antiprism graph.

This page as a plain text file.
%I A378922 #12 Sep 03 2025 10:49:58
%S A378922 1,1,7,28,81,191,391,722,1233,1981,3031,4456,6337,8763,11831,15646,
%T A378922 20321,25977,32743,40756,50161,61111,73767,88298,104881,123701,144951,
%U A378922 168832,195553,225331,258391,294966,335297,379633,428231,481356,539281,602287,670663,744706,824721
%N A378922 Number of minimal edge cuts in the n-antiprism graph.
%C A378922 The n-antiprism graph is defined for n >= 3. The sequence has been extended to n = 0 using the formula. - _Andrew Howroyd_, Jun 09 2025
%H A378922 Andrew Howroyd, <a href="/A378922/b378922.txt">Table of n, a(n) for n = 0..1000</a>
%H A378922 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>.
%H A378922 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCut.html">Minimal Edge Cut</a>.
%H A378922 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A378922 From _Andrew Howroyd_, Jun 09 2025: (Start)
%F A378922 a(n) = 1 + 2*n*(n-1) + n^2*(n-1)*(2*n-1)/6.
%F A378922 a(n) = (2*n^4 - 3*n^3 + 13*n^2 - 12*n + 6)/6. (End)
%F A378922 From _Elmo R. Oliveira_, Sep 03 2025: (Start)
%F A378922 G.f.: (1 - 4*x + 12*x^2 - 7*x^3 + 6*x^4)/(1-x)^5.
%F A378922 E.g.f.: (6 + 18*x^2 + 9*x^3 + 2*x^4)*exp(x)/6.
%F A378922 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
%o A378922 (PARI) a(n) = (2*n^4 - 3*n^3 + 13*n^2 - 12*n + 6)/6 \\ _Andrew Howroyd_, Jun 09 2025
%Y A378922 Cf. A359620.
%K A378922 nonn,easy,changed
%O A378922 0,3
%A A378922 _Eric W. Weisstein_, Dec 11 2024
%E A378922 a(0)-a(2) prepended and a(7) onwards from _Andrew Howroyd_, Jun 09 2025