cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045).

This page as a plain text file.
%I A378931 #6 Dec 21 2024 01:01:43
%S A378931 1,-1,3,-2,-9,15,-4,-18,-25,55,-8,-36,-50,-121,231,-16,-72,-100,-242,
%T A378931 -441,903,-32,-144,-200,-484,-882,-1849,3655,-64,-288,-400,-968,-1764,
%U A378931 -3698,-7225,14535,-128,-576,-800,-1936,-3528,-7396,-14450,-29241,58311,-256,-1152,-1600,-3872,-7056,-14792,-28900,-58482,-116281,232903
%N A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045).
%C A378931 Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts:
%C A378931   1/1
%C A378931   1/3  1/3
%C A378931   1/3  1/5  1/15
%C A378931   1/3  1/5  1/33   1/55
%C A378931   1/3  1/5  1/33  1/105  1/231
%C A378931   1/3  1/5  1/33  1/105  1/473  1/903
%C A378931   etc.
%C A378931   Sum_{k=1..n} M(n, k) * 2^(k-1) = 1.
%C A378931   Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1).
%C A378931   Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n).
%F A378931 T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n.
%F A378931 G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)).
%e A378931 Triangle T(n, k) for 1 <= k <= n starts:
%e A378931 n\k :     1     2     3      4      5      6       7       8      9
%e A378931 ===================================================================
%e A378931   1 :     1
%e A378931   2 :    -1     3
%e A378931   3 :    -2    -9    15
%e A378931   4 :    -4   -18   -25     55
%e A378931   5 :    -8   -36   -50   -121    231
%e A378931   6 :   -16   -72  -100   -242   -441    903
%e A378931   7 :   -32  -144  -200   -484   -882  -1849    3655
%e A378931   8 :   -64  -288  -400   -968  -1764  -3698   -7225   14535
%e A378931   9 :  -128  -576  -800  -1936  -3528  -7396  -14450  -29241  58311
%e A378931   etc.
%t A378931 T[n_,k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n,k],{n,10},{k,n}]//Flatten (* _Stefano Spezia_, Dec 11 2024 *)
%o A378931 (PARI) T(n,k)=if(k==n,(2*4^n-(-2)^n-1)/9,-2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9)
%Y A378931 Cf. A001045, A023001, A378676.
%Y A378931 A084175 (main diagonal), A139818 (1st subdiagonal), A000079 (column 1 and row sums).
%K A378931 sign,easy,tabl
%O A378931 1,3
%A A378931 _Werner Schulte_, Dec 11 2024