This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378931 #6 Dec 21 2024 01:01:43 %S A378931 1,-1,3,-2,-9,15,-4,-18,-25,55,-8,-36,-50,-121,231,-16,-72,-100,-242, %T A378931 -441,903,-32,-144,-200,-484,-882,-1849,3655,-64,-288,-400,-968,-1764, %U A378931 -3698,-7225,14535,-128,-576,-800,-1936,-3528,-7396,-14450,-29241,58311,-256,-1152,-1600,-3872,-7056,-14792,-28900,-58482,-116281,232903 %N A378931 Triangle read by rows, based on products of Jacobsthal numbers (A001045). %C A378931 Let M = T^(-1) be matrix inverse of T seen as a lower triangular matrix. M is a harmonic triangle with M(n, k) = 1 / A084175(n) if k = n, and 1 / A378676(k) if 1 <= k < n. Triangle M(n, k) for 1 <= k <= n starts: %C A378931 1/1 %C A378931 1/3 1/3 %C A378931 1/3 1/5 1/15 %C A378931 1/3 1/5 1/33 1/55 %C A378931 1/3 1/5 1/33 1/105 1/231 %C A378931 1/3 1/5 1/33 1/105 1/473 1/903 %C A378931 etc. %C A378931 Sum_{k=1..n} M(n, k) * 2^(k-1) = 1. %C A378931 Sum_{k=1..n} M(n, k) * (-2)^(k-1) = (-1)^(n-1) / A001045(n+1). %C A378931 Sum_{k=1..n} 2^(k-1) / M(n, k) = (8^n - 1) / 7 = A023001(n). %F A378931 T(n, n) = (2 * 4^n - (-2)^n - 1) / 9 = A084175(n), and T(n, k) = -2^(n-1-k) * (2^(k+1) + (-1)^k)^2 / 9 for 1 <= k < n. %F A378931 G.f.: x*t * (1 - 3*t - 6*x*t^2 + 8*x^2*t^3) / ((1 - 2*t) * (1 - x*t) * (1 + 2*x*t) * (1 - 4*x*t)). %e A378931 Triangle T(n, k) for 1 <= k <= n starts: %e A378931 n\k : 1 2 3 4 5 6 7 8 9 %e A378931 =================================================================== %e A378931 1 : 1 %e A378931 2 : -1 3 %e A378931 3 : -2 -9 15 %e A378931 4 : -4 -18 -25 55 %e A378931 5 : -8 -36 -50 -121 231 %e A378931 6 : -16 -72 -100 -242 -441 903 %e A378931 7 : -32 -144 -200 -484 -882 -1849 3655 %e A378931 8 : -64 -288 -400 -968 -1764 -3698 -7225 14535 %e A378931 9 : -128 -576 -800 -1936 -3528 -7396 -14450 -29241 58311 %e A378931 etc. %t A378931 T[n_,k_]:=If[k==n, (2*4^n-(-2)^n-1)/9, -2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9]; Table[T[n,k],{n,10},{k,n}]//Flatten (* _Stefano Spezia_, Dec 11 2024 *) %o A378931 (PARI) T(n,k)=if(k==n,(2*4^n-(-2)^n-1)/9,-2^(n-1-k)*(2^(k+1)+(-1)^k)^2/9) %Y A378931 Cf. A001045, A023001, A378676. %Y A378931 A084175 (main diagonal), A139818 (1st subdiagonal), A000079 (column 1 and row sums). %K A378931 sign,easy,tabl %O A378931 1,3 %A A378931 _Werner Schulte_, Dec 11 2024