cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378932 Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the grid graph P_m X P_n.

This page as a plain text file.
%I A378932 #12 Dec 11 2024 17:57:10
%S A378932 0,1,1,2,6,2,3,15,15,3,4,28,53,28,4,5,45,146,146,45,5,6,66,356,627,
%T A378932 356,66,6,7,91,809,2471,2471,809,91,7,8,120,1759,9292,16213,9292,1759,
%U A378932 120,8,9,153,3716,33878,103196,103196,33878,3716,153,9,10,190,7702,120771,642364,1123743,642364,120771,7702,190,10
%N A378932 Array read by antidiagonals: T(m,n) is the number of minimal edge cuts in the grid graph P_m X P_n.
%C A378932 T(m,n) is the number of partitionings of an m X n checkerboard into two edgewise-connected sets.
%H A378932 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>.
%H A378932 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimalEdgeCut.html">Minimal Edge Cut</a>.
%F A378932 T(m,n) = T(n,m).
%e A378932 Table starts:
%e A378932 ===================================================
%e A378932 m\n | 1  2    3     4      5        6         7 ...
%e A378932 ----+----------------------------------------------
%e A378932   1 | 0  1    2     3      4        5         6 ...
%e A378932   2 | 1  6   15    28     45       66        91 ...
%e A378932   3 | 2 15   53   146    356      809      1759 ...
%e A378932   4 | 3 28  146   627   2471     9292     33878 ...
%e A378932   5 | 4 45  356  2471  16213   103196    642364 ...
%e A378932   6 | 5 66  809  9292 103196  1123743  12028981 ...
%e A378932   7 | 6 91 1759 33878 642364 12028981 221984391 ...
%e A378932   ...
%Y A378932 Main diagonal is A068416.
%Y A378932 Rows 1..4 are A001477(n-1), A000384, A378933, A378934.
%Y A378932 Rows 3..8 multiplied by 2 are A166761, A166766, A166769, A166771, A166773, A166774.
%Y A378932 Cf. A287151, A359990.
%K A378932 nonn,tabl
%O A378932 1,4
%A A378932 _Andrew Howroyd_, Dec 11 2024