This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378937 #16 Mar 03 2025 13:28:21 %S A378937 1,6,22,84,346,1476,6322,26844,112666,467796,1925122,7867404,31980586, %T A378937 129475716,522603922,2104600764,8461122106,33972973236,136278002722, %U A378937 546271650924,2188568145226,8764722448356,35090249881522,140455100761884,562102748697946,2249258115629076 %N A378937 Number of minimal edge cuts in the 2 X n rook graph. %H A378937 Andrew Howroyd, <a href="/A378937/b378937.txt">Table of n, a(n) for n = 1..1000</a> %H A378937 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (10,-35,50,-24). %F A378937 a(n) = A134165(n) - 2. %F A378937 a(n) = 2^(2*n-1) - 3^n + 5*2^(n-1) - 3. %F A378937 G.f.: (1 - 4*x - 3*x^2 + 24*x^3)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)). %F A378937 E.g.f.: exp(x)*(2*exp(3*x) - 3*exp(2*x) + 5*exp(x) - 3). - _Stefano Spezia_, Mar 03 2025 %t A378937 LinearRecurrence[{10, -35, 50, -24}, {1, 6, 22, 84}, 30] (* _Paolo Xausa_, Mar 02 2025 *) %o A378937 (PARI) a(n) = 2^(2*n-1) - 3^n + 5*2^(n-1) - 3 %Y A378937 Row 2 of A378935. %Y A378937 Cf. A134165. %K A378937 nonn,easy %O A378937 1,2 %A A378937 _Andrew Howroyd_, Dec 12 2024