cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378938 Array read by antidiagonals: T(m,n) is the number of Hamiltonian paths in an m X n grid which start in the top left corner.

This page as a plain text file.
%I A378938 #7 Dec 20 2024 10:45:03
%S A378938 1,1,1,1,2,1,1,3,3,1,1,4,8,4,1,1,5,17,17,5,1,1,6,38,52,38,6,1,1,7,78,
%T A378938 160,160,78,7,1,1,8,164,469,824,469,164,8,1,1,9,332,1337,3501,3501,
%U A378938 1337,332,9,1,1,10,680,3750,16262,22144,16262,3750,680,10,1
%N A378938 Array read by antidiagonals: T(m,n) is the number of Hamiltonian paths in an m X n grid which start in the top left corner.
%C A378938 These paths are also called Greek-key tours. The path can end anywhere.
%H A378938 Andrew Howroyd, <a href="/A378938/b378938.txt">Table of n, a(n) for n = 1..435</a> (first 29 antidiagonals)
%F A378938 T(m,n) = T(n,m).
%e A378938 Array begins:
%e A378938 ======================================================
%e A378938 m\n | 1 2   3    4     5      6        7         8 ...
%e A378938 ----+-------------------------------------------------
%e A378938   1 | 1 1   1    1     1      1        1         1 ...
%e A378938   2 | 1 2   3    4     5      6        7         8 ...
%e A378938   3 | 1 3   8   17    38     78      164       332 ...
%e A378938   4 | 1 4  17   52   160    469     1337      3750 ...
%e A378938   5 | 1 5  38  160   824   3501    16262     68591 ...
%e A378938   6 | 1 6  78  469  3501  22144   144476    899432 ...
%e A378938   7 | 1 7 164 1337 16262 144476  1510446  13506023 ...
%e A378938   8 | 1 8 332 3750 68591 899432 13506023 180160012 ...
%e A378938   ...
%Y A378938 Main diagonal is A145157.
%Y A378938 Rows 1..8 are A000012, A000027, A046994, A046995, A145156, A160240, A160241, A374307.
%Y A378938 Cf. A332307, A064298, A271465, A271592, A288518.
%K A378938 nonn,tabl
%O A378938 1,5
%A A378938 _Andrew Howroyd_, Dec 20 2024