This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378946 #8 Dec 12 2024 09:28:03 %S A378946 1,3,13,31,49,68,216,227,288,339,408,421,797,1176,1494,1947,3876,6453, %T A378946 12108,12558,13272,24027,80667,92472,98154,186543,765351,2294838, %U A378946 6815886,11105034,12608001,13669797,25343472,25485726,40937853,48562668,72974013,122175969 %N A378946 Locations of records in A378898. %C A378946 The record values are in A378945. %C A378946 Numbers k such that for some m, (m+k)^2 + k^2 is prime while (m'+k)^2 + k^2 is not prime for 0 < m' < m, and for every k' < k there is m' < m such that (m'+k')^2 + k'^2 is prime. %F A378946 A378898(a(n)) = A378945(n). %e A378946 a(1) = 1, as A378898(1) = 1, with (1+1)^2 + 1^2 = 5 prime. %e A378946 a(2) = 3, as A378898(3) = 5, with (5+3)^2 + 3^2 = 73 prime, and 3 is the first k with A378898(k) > 1. %e A378946 a(3) = 13, as A378898(13) = 7, with (7+13)^2 + 13^2 = 569 prime, and 13 is the first k with A378898(k) > 5. %p A378946 f:= proc(k) local m; %p A378946 for m from 1 by 2 do %p A378946 if igcd(m,k) = 1 and isprime((k+m)^2 + k^2) then return m fi %p A378946 od %p A378946 end proc: %p A378946 J:= NULL: count:= 0: rec:= 0: %p A378946 for k from 1 while count < 30 do %p A378946 v:= f(k); %p A378946 if v > rec then %p A378946 count:= count+1; %p A378946 J:= J, k; %p A378946 rec:= v; %p A378946 fi %p A378946 od: %p A378946 J; %Y A378946 Cf. A378898, A378945. %K A378946 nonn %O A378946 1,2 %A A378946 _Robert Israel_, Dec 11 2024