cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378947 Number of row states in an automaton for the enumeration of the number of fixed polyominoes with bounding box of width n.

This page as a plain text file.
%I A378947 #35 Jan 26 2025 09:09:13
%S A378947 1,2,6,16,40,99,247,625,1605,4178,11006,29292,78652,212812,579672,
%T A378947 1588242,4374282,12103404,33628824,93786966,262450878,736710357,
%U A378947 2073834417,5853011847,16558618507,46949351272,133390812252,379708642286,1082797114046,3092894319075,8848275403639
%N A378947 Number of row states in an automaton for the enumeration of the number of fixed polyominoes with bounding box of width n.
%C A378947 The states track the non-crossing partitions of the connected components and whether each side of the bounding rectangle has been reached.
%C A378947 a(n) is an upper bound on the order of the generating function of row n of A292357.
%H A378947 Louis Marin, <a href="https://arxiv.org/abs/2406.16413">Counting Polyominoes in a Rectangle b x h</a>, arXiv:2406.16413 [cs.DM], 2024; EPTCS 403, 2024, pp. 145-149.
%F A378947 a(n) = 1 + Sum_{m=1..2^n-1} A000108(A069010(m)) * 2^[m=0 mod 2] * 2^[m<2^(n-1)], where [] is the Iverson bracket.
%F A378947 From _Andrew Howroyd_, Dec 17 2024: (Start)
%F A378947 a(n) = 1 + Sum_{k=1..floor((n+1)/2)} (binomial(n+1, 2*k) + 2*binomial(n,2*k) + binomial(n-1,2*k)) * binomial(2*k, k)/(k+1).
%F A378947 a(n) = A001006(n+1) + 2*A001006(n) + A001006(n-1) - 3 for n > 0. (End)
%p A378947 a:= proc(n) option remember; `if`(n<3, [1, 2, 6][n+1],
%p A378947        ((3*n^2+2*n-12)*a(n-1)+(n^2-13*n+15)*a(n-2)
%p A378947         -3*(n-3)*(n-1)*a(n-3))/((n-2)*(n+3)))
%p A378947     end:
%p A378947 seq(a(n), n=0..30);  # _Alois P. Heinz_, Dec 20 2024
%t A378947 a[n_] := a[n] = If[n < 3, {1, 2, 6}[[n+1]],
%t A378947    ((3*n^2 + 2*n - 12)*a[n-1] + (n^2 - 13*n + 15)*a[n-2]
%t A378947    - 3*(n-3)*(n-1)*a[n-3])/((n-2)*(n+3))];
%t A378947 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jan 26 2025, after _Alois P. Heinz_ *)
%o A378947 (PARI) b(n) = (1 + (hammingweight(bitxor(n, n>>1)))) >> 1;
%o A378947 C(n) = binomial(2*n, n)/(n+1);
%o A378947 a(n) = 1 + sum(m=1, 2^n-1, C(b(m)) * 2^((m % 2)==0) * 2^(m<2^(n-1))); \\ _Michel Marcus_, Dec 12 2024
%o A378947 (PARI) a(n) = {1 + sum(k=1, (n+1)\2, (binomial(n+1, 2*k)+2*binomial(n,2*k)+binomial(n-1,2*k))*binomial(2*k, k)/(k+1))} \\ _Andrew Howroyd_, Dec 17 2024
%Y A378947 Cf. A000108, A001006, A069010, A140662, A292357.
%K A378947 nonn,easy
%O A378947 0,2
%A A378947 _Louis Marin_, Dec 11 2024
%E A378947 More terms from _Michel Marcus_, Dec 12 2024
%E A378947 a(26) onwards from _Andrew Howroyd_, Dec 17 2024