This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378949 #21 Jan 19 2025 00:36:36 %S A378949 1,2,3,4,5,6,7,8,9,11,12,22,23,33,34,44,45,55,56,66,67,77,78,88,89,99, %T A378949 111,112,122,123,222,223,233,234,333,334,344,345,444,445,455,456,555, %U A378949 556,566,567,666,667,677,678,777,778,788,789,888,889,899,999 %N A378949 Numbers with monotonically increasing digits, increasing by only 0 or 1. %H A378949 Robert Israel, <a href="/A378949/b378949.txt">Table of n, a(n) for n = 1..10000</a> %e A378949 33 is a term since the digits are monotonically increasing and their difference is 0. %e A378949 34 is also a term since the digits are monotonically increasing and their difference is 1. %e A378949 35 is not a term since the difference in consecutive digits is not 0 or 1. %e A378949 32 is not a term since the digits are decreasing. %p A378949 extend:= proc(k) local m,d; %p A378949 m:= 10^ilog10(k); %p A378949 d:= floor(k/m); %p A378949 if d = 1 then 10*m+k else (d-1)*10*m+k, d*10*m+k fi %p A378949 end proc: %p A378949 R:= $1..9: %p A378949 A:= [R]: %p A378949 for i from 2 to 5 do %p A378949 A:= map(extend,A); %p A378949 R:= R, op(sort(A)); %p A378949 od: %p A378949 R; # _Robert Israel_, Jan 18 2025 %t A378949 Select[Range[1000],SubsetQ[{0, 1}, Union@ Differences@ IntegerDigits[#]] &] (* _James C. McMahon_, Dec 21 2024 *) %o A378949 (Python) %o A378949 from itertools import count, islice %o A378949 def bgen(last, d): %o A378949 if d == 0: yield tuple(); return %o A378949 t = (1, 9) if last == None else (last, min(last+1, 9)) %o A378949 for i in range(t[0], t[1]+1): yield from ((i, )+r for r in bgen(i, d-1)) %o A378949 def agen(): # generator of terms %o A378949 yield from (int("".join(map(str, i))) for d in count(1) for i in bgen(None, d)) %o A378949 print(list(islice(agen(), 62))) # _Michael S. Branicky_, Dec 18 2024 %Y A378949 Cf. A378808, A378774. %K A378949 nonn,base %O A378949 1,2 %A A378949 _Randy L. Ekl_, Dec 18 2024 %E A378949 Offset corrected by _James C. McMahon_, Dec 21 2024