cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378957 G.f. A(x) satisfies A(x) = ( (1 + x * A(x)^9) / (1 - x) )^(1/2).

This page as a plain text file.
%I A378957 #7 Dec 12 2024 09:24:19
%S A378957 1,1,5,41,399,4263,48335,571061,6953854,86659366,1099882862,
%T A378957 14168133882,184756656826,2434227814578,32354612273352,
%U A378957 433312539103431,5841624625609747,79211315586085551,1079630126313403483,14782787622359779197,203248589087860373309,2804882047701189052925
%N A378957 G.f. A(x) satisfies A(x) = ( (1 + x * A(x)^9) / (1 - x) )^(1/2).
%F A378957 G.f. A(x) satisfies:
%F A378957 (1) A(x) = 1 + x * A(x)^2 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4 - A(x)^5 + A(x)^6).
%F A378957 (2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A366402.
%F A378957 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+7*k/2+1/2,n)/(2*n+7*k+1).
%o A378957 (PARI) a(n) = sum(k=0, n, binomial(n, k)*binomial(n+7*k/2+1/2, n)/(2*n+7*k+1));
%Y A378957 Cf. A000108, A219537, A370473.
%Y A378957 Cf. A366402.
%K A378957 nonn
%O A378957 0,3
%A A378957 _Seiichi Manyama_, Dec 12 2024