A378962 First differences of A378726.
1, 1, 1, 5, 1, 1, 5, 1, 1, 5, 1, 1, 18, 1, 1, 5, 1, 1, 5, 1, 1, 18, 1, 1, 5, 1, 1, 5, 1, 1, 18, 1, 1, 5, 1, 1, 5, 1, 1, 58, 1, 1, 5, 1, 1, 5, 1, 1, 18, 1, 1, 5, 1, 1, 5, 1, 1, 18, 1, 1, 5, 1, 1, 5, 1, 1, 58, 1, 1, 5, 1, 1, 5, 1
Offset: 1
Keywords
Examples
The total number of fires when starting with 12 chips at the root is 3, and the total number of fires when starting with 15 chips at the root is 8. This means that a(4) = 5.
Links
- Dillan Agrawal, Selena Ge, Jate Greene, Tanya Khovanova, Dohun Kim, Rajarshi Mandal, Tanish Parida, Anirudh Pulugurtha, Gordon Redwine, Soham Samanta, and Albert Xu, Chip-Firing on Infinite k-ary Trees, arXiv:2501.06675 [math.CO], 2025. See p. 17.
- Wikipedia, Chip-firing game.
Programs
-
Python
import math def F(N, k): n = int(math.log(N * (k - 1) + 1, k)) a = [0] * (n + 1) num = N - ((k ** n) - 1)/(k - 1) for i in range(n, -1, -1): if k ** i <= num: a[i] = int(num/(k ** i)) num %= (k ** i) res = 0 for j in range(1, n): x = int((j * (k ** (j + 1)) - (j + 1) * (k ** j) + 1)/((k - 1) ** 2)) res += x * (a[j] + 1) return res s = "" for N in range(1, 200): s += str(int(F(3 * N + 3, 3) - F(3 * N, 3))) s += ", " print(s)
Comments