cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378964 a(n) is the least prime of the form p^2 + n*q^2 where p and q are primes, or -1 if there are none.

Original entry on oeis.org

13, 17, 31, 41, 29, 73, 37, 41, 61, 89, 53, 73, 61, 151, 109, 73, 157, 97, 101, 89, 109, 97, 101, 241, 109, 113, 157, 137, -1, 241, 149, 137, 157, 257, 149, 193, 157, 367, 181, 281, 173, 193, 181, 421, 229, 193, 197, 241, 317, 499, 229, 233, -1, 241, 229, 233, 277, 241, -1, 409, 269, 257, 277
Offset: 1

Views

Author

Robert Israel, Dec 12 2024

Keywords

Comments

Green and Sawhney (see link) proved that there are infinitely many such primes if n == 0 or 4 (mod 6).
If n is odd, p or q must be 2.
If n == 2 (mod 3), p or q must be 3.
Thus if n == 5 (mod 6), the only possible primes of this form are 9 + 4 n and 4 + 9 n.

Examples

			a(6) = 73 because 73 = 7^2 + 6 * 2^2 is the least prime of the form p^2 + 6 * q^2.
		

Crossrefs

Cf. A111199 (a(n) = 9+4*n).

Programs

  • Maple
    f:= proc(n) uses priqueue;
        local pq, p, t;
        if n mod 6 = 5 then
          if isprime(3^2 + n * 2^2) then return 3^2 + n*2^2
          elif isprime(2^2 + n*3^2) then return 2^2 + n*3^2
          else return -1
        fi fi;
        initialize(pq);
        insert([-9 - 4*n,3,2],pq);
        insert([-4 - 9*n,2,3],pq);
        if n mod 3 = 2 then
          do
            t:= extract(pq);
            if isprime(-t[1]) then return -t[1] fi;
            if t[2] = 3 then p:= nextprime(t[3]); if p = 3 then p:= 5 fi; insert([-9 - n*p^2,3,p],pq) fi;
            if t[3] = 3 then p:= nextprime(t[2]); if p = 3 then p:= 5 fi; insert([-p^2 - n*9,p,3],pq) fi;
          od
        else
          do
            t:= extract(pq);
            if isprime(-t[1]) then return -t[1] fi;
            if t[3] = 2  then p:= nextprime(t[2]); insert([-p^2 - n*4  , p, 2],pq) fi;
            if t[2] = 2 or n::even then
              p:= nextprime(t[3]); insert([-t[2]^2 - n*p^2,t[2],p],pq)
            fi;
          od
        fi
    end proc:
    map(f, [$1..200]);