A378964 a(n) is the least prime of the form p^2 + n*q^2 where p and q are primes, or -1 if there are none.
13, 17, 31, 41, 29, 73, 37, 41, 61, 89, 53, 73, 61, 151, 109, 73, 157, 97, 101, 89, 109, 97, 101, 241, 109, 113, 157, 137, -1, 241, 149, 137, 157, 257, 149, 193, 157, 367, 181, 281, 173, 193, 181, 421, 229, 193, 197, 241, 317, 499, 229, 233, -1, 241, 229, 233, 277, 241, -1, 409, 269, 257, 277
Offset: 1
Examples
a(6) = 73 because 73 = 7^2 + 6 * 2^2 is the least prime of the form p^2 + 6 * q^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- B. Green and M. Sawhney, Primes of the form p^2 + n q^2, arXiv:2410.04189 [math.NT], 2024.
Crossrefs
Cf. A111199 (a(n) = 9+4*n).
Programs
-
Maple
f:= proc(n) uses priqueue; local pq, p, t; if n mod 6 = 5 then if isprime(3^2 + n * 2^2) then return 3^2 + n*2^2 elif isprime(2^2 + n*3^2) then return 2^2 + n*3^2 else return -1 fi fi; initialize(pq); insert([-9 - 4*n,3,2],pq); insert([-4 - 9*n,2,3],pq); if n mod 3 = 2 then do t:= extract(pq); if isprime(-t[1]) then return -t[1] fi; if t[2] = 3 then p:= nextprime(t[3]); if p = 3 then p:= 5 fi; insert([-9 - n*p^2,3,p],pq) fi; if t[3] = 3 then p:= nextprime(t[2]); if p = 3 then p:= 5 fi; insert([-p^2 - n*9,p,3],pq) fi; od else do t:= extract(pq); if isprime(-t[1]) then return -t[1] fi; if t[3] = 2 then p:= nextprime(t[2]); insert([-p^2 - n*4 , p, 2],pq) fi; if t[2] = 2 or n::even then p:= nextprime(t[3]); insert([-t[2]^2 - n*p^2,t[2],p],pq) fi; od fi end proc: map(f, [$1..200]);
Comments