A378966 Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
0, 546, 132840, 27132714, 5400270960, 1070181351954, 211922939930520, 41960773653737946, 8308058686721274720, 1644954930586205575554, 325692811387179035829960, 64485533166912548464047114, 12767809924078284782564882640, 2527961881127459862292727058546, 500523684710829430645198931758200
Offset: 0
Examples
For n=2, the short leg is A377726(2,1) = 13 and the long leg so the semiperimeter is then a(2) = (13 * 84)/2 =546.
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
Programs
-
Mathematica
ar[n_]:=ar[n]= Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{ra(ra-1)(2ra-1)}];areas={};Do[areas=Join[areas,FullSimplify[ar[n]]],{n,0,16}];areas