This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378974 #9 Dec 15 2024 07:24:42 %S A378974 1,2,0,1,7,2,2,0,9,2,6,8,7,4,3,1,6,5,1,3,3,2,9,8,1,4,4,2,3,3,7,6,6,4, %T A378974 7,7,6,5,1,8,2,0,0,9,6,6,8,7,3,7,4,5,8,6,0,3,8,8,0,4,1,6,0,4,7,5,8,4, %U A378974 1,9,3,0,0,8,3,2,2,8,6,5,9,2,3,0,9,6,8,4,6,8 %N A378974 Decimal expansion of the volume of a triakis icosahedron with unit shorter edge length. %C A378974 The triakis icosahedron is the dual polyhedron of the truncated dodecahedron. %H A378974 Paolo Xausa, <a href="/A378974/b378974.txt">Table of n, a(n) for n = 2..10000</a> %H A378974 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriakisIcosahedron.html">Triakis Icosahedron</a>. %H A378974 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_icosahedron">Triakis icosahedron</a>. %F A378974 Equals (19 + 13*sqrt(5))/4 = (19 + 13*A002163)/4. %e A378974 12.017220926874316513329814423376647765182009668737... %t A378974 First[RealDigits[(19 + 13*Sqrt[5])/4, 10, 100]] (* or *) %t A378974 First[RealDigits[PolyhedronData["TriakisIcosahedron", "Volume"], 10, 100]] %Y A378974 Cf. A378973 (surface area), A378975 (inradius), A378976 (midradius), A378977 (dihedral angle). %Y A378974 Cf. A377695 (volume of a truncated dodecahedron with unit edge length). %Y A378974 Cf. A002163. %K A378974 nonn,cons,easy %O A378974 2,2 %A A378974 _Paolo Xausa_, Dec 14 2024