This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378975 #8 Dec 15 2024 07:24:47 %S A378975 1,3,7,4,5,1,7,4,4,7,0,1,0,4,7,1,6,4,7,2,7,5,1,0,0,0,0,6,3,9,7,4,2,3, %T A378975 6,7,4,4,8,1,0,2,7,3,3,3,0,7,0,7,5,3,0,7,8,6,1,7,6,6,9,8,6,5,8,9,8,8, %U A378975 8,6,8,7,0,8,2,0,9,0,5,9,4,2,0,8,8,9,3,7,4,4 %N A378975 Decimal expansion of the inradius of a triakis icosahedron with unit shorter edge length. %C A378975 The triakis icosahedron is the dual polyhedron of the truncated dodecahedron. %H A378975 Paolo Xausa, <a href="/A378975/b378975.txt">Table of n, a(n) for n = 1..10000</a> %H A378975 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriakisIcosahedron.html">Triakis Icosahedron</a>. %H A378975 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_icosahedron">Triakis icosahedron</a>. %F A378975 Equals sqrt((477 + 199*sqrt(5))/488) = sqrt((477 + 199*A002163)/488). %e A378975 1.37451744701047164727510000639742367448102733307... %t A378975 First[RealDigits[Sqrt[(477 + 199*Sqrt[5])/488], 10, 100]] (* or *) %t A378975 First[RealDigits[PolyhedronData["TriakisIcosahedron", "Inradius"], 10, 100]] %Y A378975 Cf. A378973 (surface area), A378974 (volume), A378976 (midradius), A378977 (dihedral angle). %Y A378975 Cf. A002163. %K A378975 nonn,cons,easy %O A378975 1,2 %A A378975 _Paolo Xausa_, Dec 14 2024