cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378977 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.

This page as a plain text file.
%I A378977 #11 Mar 31 2025 03:28:55
%S A378977 2,8,0,3,2,1,7,8,5,6,0,8,4,8,0,5,9,6,2,1,0,3,4,4,9,3,2,6,4,8,7,7,2,5,
%T A378977 3,2,8,1,1,5,2,6,5,9,8,8,0,3,5,4,0,1,2,6,9,8,4,7,0,1,7,0,6,0,5,1,6,8,
%U A378977 7,6,1,6,4,9,4,7,8,1,9,2,7,5,1,4,3,8,7,6,5,3
%N A378977 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.
%C A378977 The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.
%H A378977 Paolo Xausa, <a href="/A378977/b378977.txt">Table of n, a(n) for n = 1..10000</a>
%H A378977 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriakisIcosahedron.html">Triakis Icosahedron</a>.
%H A378977 Wikipedia, <a href="https://en.wikipedia.org/wiki/Triakis_icosahedron">Triakis icosahedron</a>.
%F A378977 Equals arccos(-3*(8 + 5*sqrt(5))/61) = arccos(-3*(8 + 5*A002163)/61).
%e A378977 2.8032178560848059621034493264877253281152659880354...
%t A378977 First[RealDigits[ArcCos[-3*(8 + 5*Sqrt[5])/61], 10, 100]] (* or *)
%t A378977 First[RealDigits[First[PolyhedronData["TriakisIcosahedron", "DihedralAngles"]], 10, 100]]
%Y A378977 Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378976 (midradius).
%Y A378977 Cf. A137218 and A344075 (dihedral angles of a truncated dodecahedron).
%Y A378977 Cf. A002163.
%K A378977 nonn,cons,easy
%O A378977 1,1
%A A378977 _Paolo Xausa_, Dec 14 2024