This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A378979 #23 Dec 15 2024 06:49:49 %S A378979 1,1,2,0,5,4,1,6,19,6,2,14,22,41,10,-4,10,94,58,109,12,4,12,38,286, %T A378979 118,155,16,1,18,102,70,1198,190,271,18,-3,41,46,394,158,2014,286,341, %U A378979 22,-2,26,469,94,1284,214,4606,394,505,28,8,22,148,2001,178,2452,350,6478,614,811,30,-12,22,178,630,13177,262,4842,502,11614,838,929,36 %N A378979 Square array A(n, k) = 2*A246278(n, k) - sigma(A246278(n, k)), read by falling antidiagonals. Deficiency applied to the prime shift array. %C A378979 Each column is strictly increasing. %C A378979 For all k >= 1, A(1+A378985(k), k) > 0, and it is the topmost positive number of the column k. %H A378979 Antti Karttunen, <a href="/A378979/b378979.txt">Table of n, a(n) for n = 1..11325; the first 150 antidiagonals, flattened</a> %H A378979 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %H A378979 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>. %F A378979 A(n, k) = A033879(A246278(n, k)) = 2*A246278(n, k) - A355927(n, k). %F A378979 A(n, k) = A372563(n,k) - A372562(n, k). %e A378979 The top left corner of the array: %e A378979 k= | 1 2 3 4 5 6 7 8 9 10 11 12 %e A378979 2k= | 2 4 6 8 10 12 14 16 18 20 22 24 %e A378979 ----+------------------------------------------------------------------- %e A378979 1 | 1, 1, 0, 1, 2, -4, 4, 1, -3, -2, 8, -12, %e A378979 2 | 2, 5, 6, 14, 10, 12, 18, 41, 26, 22, 22, 30, %e A378979 3 | 4, 19, 22, 94, 38, 102, 46, 469, 148, 178, 62, 502, %e A378979 4 | 6, 41, 58, 286, 70, 394, 94, 2001, 630, 476, 106, 2746, %e A378979 5 | 10, 109, 118, 1198, 158, 1284, 178, 13177, 1522, 1720, 218, 14110, %e A378979 6 | 12, 155, 190, 2014, 214, 2452, 262, 26181, 3216, 2762, 334, 31858, %e A378979 7 | 16, 271, 286, 4606, 350, 4842, 446, 78301, 5416, 5926, 478, 82294, %o A378979 (PARI) %o A378979 up_to = 78; %o A378979 A033879(n) = (n+n-sigma(n)); %o A378979 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A378979 A378979sq(row,col) = A033879(A246278sq(row,col)); %o A378979 A378979list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A378979sq(col,(a-(col-1))))); (v); }; %o A378979 v378979 = A378979list(up_to); %o A378979 A378979(n) = v378979[n]; %Y A378979 Cf. A033879, A246278, A336835, A355927, A372562, A372563. %Y A378979 Cf. A006093 (column 1), A306190 (column 2), A378978 (row 1), A378985 (row index of the topmost positive term in column n). %Y A378979 Cf. also arrays A341605, A341606 and A341607. %Y A378979 Cf. also A324055. %K A378979 sign,tabl %O A378979 1,3 %A A378979 _Antti Karttunen_, Dec 13 2024