A378984 Squares in A378769.
32400, 63504, 90000, 129600, 156816, 202500, 219024, 254016, 291600, 345744, 360000, 374544, 467856, 490000, 518400, 571536, 627264, 685584, 777924, 810000, 876096, 960400, 1016064, 1089936, 1166400, 1210000, 1245456, 1382976, 1411344, 1440000, 1498176, 1587600
Offset: 1
Examples
a(1) = 32400 = 2^4 * 3^4 * 5^2 has the following divisor pair types: Type A: 16 * 2025, Type B: 48 * 675, Type C: 2 * 16200, Type D: 8 * 4050 Type E: 180 * 180, Type F: 30 * 1080, Type G: 120 * 270. a(2) = 63504 = 2^4 * 3^4 * 7^2 has the following divisor pair types: Type A: 16 * 3969, Type B: 48 * 1323, Type C: 2 * 31752, Type D: 8 * 7938 Type E: 252 * 252, Type F: 42 * 1512, Type G: 168 * 378. a(3) = 90000 = 2^4 * 3^2 * 5^4 has the following divisor pair types: Type A: 9 * 10000, Type B: 18 * 5000, Type C: 2 * 45000, Type D: 8 * 11250 Type E: 300 * 300, Type F: 30 * 3000, Type G: 120 * 750, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Diagram listing all divisor pairs for a(n), n = 1..8, showing type A in white, type B in light gray, type C in green or red, type D in blue or gold, type E in dark gray, type F in orange or purple, and type G in black.
- Michael De Vlieger, Diagram listing divisor pairs (d, k/d) for k = a(n), n = 1..60, showing only those with the smallest d and using the same color scheme as above, for each type and its reversal if the type is nonsymmetric.
Crossrefs
Programs
-
Mathematica
s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[2^21], IntegerQ@ Sqrt[#] &]; t = Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &]; Select[t, PrimeOmega[#] > PrimeNu[#] > 2 &]
Formula
This sequence is { k = s^2 : rad(k)^2 | k,
bigomega(k) > omega(k) > 2, p^3 | k and q^3 | k for distinct primes p, q }.
Sum_{n>=1} = Pi^2/6 - (15/Pi^2) * (1 + Sum_{p prime} (1/(p^4-1))) - ((Sum_{p prime} (1/(p^2*(p^2-1))))^2 - Sum_{p prime} (1/(p^4*(p^2-1)^2)))/2 = 0.00015490158528995570146... . - Amiram Eldar, Dec 21 2024
Comments