This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379008 #11 Dec 14 2024 14:42:08 %S A379008 0,0,0,-2,3,2,0,2,16,3,0,10,19,38,7,-6,7,88,54,104,9,1,8,33,280,113, %T A379008 151,14,0,16,96,65,1192,184,268,15,-5,38,44,389,152,2009,282,336,18, %U A379008 -4,22,464,88,1279,207,4600,388,502,24,5,16,142,1996,174,2445,345,6470,608,806,25,-14,18,174,623,13170,257,4834,497,11605,833,924,33 %N A379008 Square array A(n, k) = A294898(A246278(n, k)), read by falling antidiagonals; Difference A005187(n)-A000203(n) applied to the prime shift array. %C A379008 Question: Are all columns increasing, and strictly increasing after the leftmost column? %H A379008 Antti Karttunen, <a href="/A379008/b379008.txt">Table of n, a(n) for n = 1..11325; the first 150 antidiagonals, flattened</a> %H A379008 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %H A379008 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>. %e A379008 The top left corner of the array: %e A379008 k= | 1 2 3 4 5 6 7 8 9 10 11 12 %e A379008 2k= | 2 4 6 8 10 12 14 16 18 20 22 24 %e A379008 ----+------------------------------------------------------------------------- %e A379008 1 | 0, 0, -2, 0, 0, -6, 1, 0, -5, -4, 5, -14, %e A379008 2 | 0, 3, 2, 10, 7, 8, 16, 38, 22, 16, 18, 26, %e A379008 3 | 2, 16, 19, 88, 33, 96, 44, 464, 142, 174, 58, 495, %e A379008 4 | 3, 38, 54, 280, 65, 389, 88, 1996, 623, 469, 103, 2737, %e A379008 5 | 7, 104, 113, 1192, 152, 1279, 174, 13170, 1516, 1717, 211, 14102, %e A379008 6 | 9, 151, 184, 2009, 207, 2445, 257, 26172, 3208, 2756, 328, 31850, %e A379008 7 | 14, 268, 282, 4600, 345, 4834, 439, 78295, 5406, 5916, 473, 82285, %e A379008 8 | 15, 336, 388, 6470, 497, 7455, 533, 123071, 9035, 9501, 638, 141745, %e A379008 9 | 18, 502, 608, 11605, 653, 14081, 784, 267115, 17773, 15097, 870, 324077, %e A379008 Here 0's occur also after the first row. For example column 30, which corresponds with numbers 60, 315, 1925, 7007, 26741, ..., begins as -52, 0, 868, 4428, 19958, etc. See also A295296. %o A379008 (PARI) %o A379008 up_to = 11325; \\ = binomial(150+1,2) %o A379008 A005187(n) = { my(s=n); while(n>>=1, s+=n); s; }; %o A379008 A294898(n) = (A005187(n)-sigma(n)); %o A379008 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A379008 A379008sq(row,col) = A294898(A246278sq(row,col)); %o A379008 A379008list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379008sq(col,(a-(col-1))))); (v); }; %o A379008 v379008 = A379008list(up_to); %o A379008 A379008(n) = v379008[n]; %Y A379008 Cf. A000203, A005187, A246278, A294898, A295296. %Y A379008 Cf. A080085 (column 1, incremented by one). %Y A379008 Cf. also array A378979, and A324348 (another permutation of A294898). %K A379008 sign,tabl %O A379008 1,4 %A A379008 _Antti Karttunen_, Dec 14 2024