This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379011 #9 Dec 14 2024 11:01:20 %S A379011 0,0,1,-2,3,3,0,1,15,5,-2,9,13,35,9,-4,3,75,43,99,11,-2,3,25,245,97, %T A379011 143,15,0,7,65,53,1089,163,255,17,-6,27,31,301,133,1859,253,323,21,-4, %U A379011 5,375,73,1067,185,4335,355,483,27,-2,9,91,1715,151,2119,313,6137,565,783,29,-8,9,125,473,11979,229,4301,457,11109,781,899,35 %N A379011 Square array A(n, k) = 2*phi(A246278(n, k)) - A246278(n, k), read by falling antidiagonals; A083254, (2*phi(n)-n), applied to the prime shift array. %C A379011 Each column is strictly increasing. %H A379011 Antti Karttunen, <a href="/A379011/b379011.txt">Table of n, a(n) for n = 1..11325; the first 150 antidiagonals, flattened</a> %H A379011 <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>. %F A379011 A(n, k) = 2*A379010(n, k) - A246278(n, k). %e A379011 The top left corner of the array: %e A379011 k= | 1 2 3 4 5 6 7 8 9 10 11 12 %e A379011 2k= | 2 4 6 8 10 12 14 16 18 20 22 24 %e A379011 ----+------------------------------------------------------------------------- %e A379011 1 | 0, 0, -2, 0, -2, -4, -2, 0, -6, -4, -2, -8, %e A379011 2 | 1, 3, 1, 9, 3, 3, 7, 27, 5, 9, 9, 9, %e A379011 3 | 3, 15, 13, 75, 25, 65, 31, 375, 91, 125, 43, 325, %e A379011 4 | 5, 35, 43, 245, 53, 301, 73, 1715, 473, 371, 83, 2107, %e A379011 5 | 9, 99, 97, 1089, 133, 1067, 151, 11979, 1261, 1463, 187, 11737, %e A379011 6 | 11, 143, 163, 1859, 185, 2119, 229, 24167, 2771, 2405, 295, 27547, %e A379011 7 | 15, 255, 253, 4335, 313, 4301, 403, 73695, 4807, 5321, 433, 73117, %e A379011 8 | 17, 323, 355, 6137, 457, 6745, 491, 116603, 8165, 8683, 593, 128155, %e A379011 9 | 21, 483, 565, 11109, 607, 12995, 733, 255507, 16385, 13961, 817, 298885, %o A379011 (PARI) %o A379011 up_to = 11325; \\ = binomial(150+1,2) %o A379011 A083254(n) = (2*eulerphi(n)-n); %o A379011 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A379011 A379011sq(row,col) = A083254(A246278sq(row,col)); %o A379011 A379011list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379011sq(col,(a-(col-1))))); (v); }; %o A379011 v379011 = A379011list(up_to); %o A379011 A379011(n) = v379011[n]; %Y A379011 Cf. A000010, A083254, A246278, A379010. %Y A379011 Cf. A040976 (column 1), A378986 (row 1). %Y A379011 Cf. also A378979. %K A379011 sign,tabl %O A379011 1,4 %A A379011 _Antti Karttunen_, Dec 14 2024