This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379031 #10 Dec 16 2024 02:16:30 %S A379031 15015,19635,21945,23205,25935,26565,31395,33495,33915,35805,39585, %T A379031 41055,42315,42735,45885,47355,49665,50505,51765,54285,55965,58695, %U A379031 61215,64155,68145,70455,72345,77385,80535,82005,83265,84315,91245,95865,102795,112035,116655 %N A379031 Odd modified exponential abundant numbers: odd numbers k such that A241405(k) > 2*k. %C A379031 First differs from its subsequences A112643 and A249263 at n = 51: a(51) = 195195 is not a term of these two sequences. %C A379031 First differs from its subsequence A129485 at n = 363: a(363) = 2537535 is not a term of A129485. %C A379031 First differs from A339938 at n = 28: A339938(28) = 75075 is not a term of this sequence. %C A379031 First differs from A360526 at n = 46: A360526(46) = 165165 is not a term of this sequence. %H A379031 Amiram Eldar, <a href="/A379031/b379031.txt">Table of n, a(n) for n = 1..10000</a> %t A379031 f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1, 10^5, 2], meAbQ] %o A379031 (PARI) is(k) = if(!(k%2), 0, my(f=factor(k)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*k); %Y A379031 Intersection of A005408 and A379029. %Y A379031 Subsequence of A005231. %Y A379031 Subsequences: A112643, A129485, A249263. %Y A379031 Cf. A241405. %Y A379031 Similar sequences: A094889, A127666, A129485, A293186, A321147, A339938, A348275, A360526. %K A379031 nonn,easy %O A379031 1,1 %A A379031 _Amiram Eldar_, Dec 14 2024