cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379032 Numbers k such that k and k+1 have an equal sum of modified exponential divisors: A241405(k) = A241405(k+1).

Original entry on oeis.org

14, 44, 957, 1334, 1485, 1634, 1652, 2204, 2685, 3195, 3451, 3956, 4136, 5547, 8495, 8636, 8907, 9844, 11515, 12256, 14876, 15608, 19491, 20145, 20155, 27519, 27643, 33998, 35235, 36575, 38180, 41265, 41547, 42818, 45716, 48364, 74918, 79316, 79826, 79833, 84134
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Crossrefs

Cf. A241405.
Similar sequences: A002961, A064115, A064125, A293183, A306985.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := mesigma[n] = Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], mesigma[#] == mesigma[#+1] &]
  • PARI
    mesigma(n) = {my(f=factor(n)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))); }
    lista(kmax) = {my(m1 = 1, m2); for(k = 2, kmax, m2 = mesigma(k); if(m1 == m2, print1(k-1, ", ")); m1 = m2);}