cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a nondegenerate triangle.

This page as a plain text file.
%I A379033 #7 Dec 26 2024 20:06:35
%S A379033 8,12,18,27,45,50,75,98,105,125,147,175,242,245,338,343,363,385,429,
%T A379033 507,539,578,605,637,715,722,845,847,867,969,1001,1058,1083,1105,1183,
%U A379033 1309,1331,1445,1547,1573,1587,1615,1682,1729,1805,1859,1922,2023,2057,2185,2197
%N A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a nondegenerate triangle.
%C A379033 Subsequence of A014612 and of A145784.
%C A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a degenerate triangle are in A071142.
%H A379033 Felix Huber, <a href="/A379033/b379033.txt">Table of n, a(n) for n = 1..10000</a>
%e A379033 12 = 2*2*3 is in the sequence because 2 + 2 > 3.
%e A379033 20 = 2*2*5 is not in the sequence because 2 + 2 < 5.
%e A379033 30 = 2*3*5 is not in the sequence because 2 + 3 = 5.
%p A379033 A379033:=proc(n)
%p A379033    option remember;
%p A379033    local a,i,j,P;
%p A379033    if n=1 then
%p A379033       8
%p A379033    else
%p A379033       for a from procname(n-1)+1 do
%p A379033          P:=[];
%p A379033          if NumberTheory:-Omega(a)=3 then
%p A379033             for i in ifactors(a)[2] do
%p A379033                j:=0;
%p A379033                while j<i[2] do
%p A379033                   P:=[op(P),i[1]];
%p A379033                   j:=j+1;
%p A379033                od
%p A379033             od;
%p A379033             if P[1]+P[2]>P[3] then
%p A379033                return a
%p A379033             fi
%p A379033          fi
%p A379033       od
%p A379033    fi	
%p A379033 end proc;
%p A379033 seq(A379033(n),n=1..51);
%Y A379033 Cf. A000040, A001222, A014612, A070088, A071142, A145784, A306678, A366398, A378819.
%K A379033 nonn
%O A379033 1,1
%A A379033 _Felix Huber_, Dec 24 2024