This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A379033 #7 Dec 26 2024 20:06:35 %S A379033 8,12,18,27,45,50,75,98,105,125,147,175,242,245,338,343,363,385,429, %T A379033 507,539,578,605,637,715,722,845,847,867,969,1001,1058,1083,1105,1183, %U A379033 1309,1331,1445,1547,1573,1587,1615,1682,1729,1805,1859,1922,2023,2057,2185,2197 %N A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a nondegenerate triangle. %C A379033 Subsequence of A014612 and of A145784. %C A379033 Numbers that are the product of exactly three (not necessarily distinct) primes and these primes are sides of a degenerate triangle are in A071142. %H A379033 Felix Huber, <a href="/A379033/b379033.txt">Table of n, a(n) for n = 1..10000</a> %e A379033 12 = 2*2*3 is in the sequence because 2 + 2 > 3. %e A379033 20 = 2*2*5 is not in the sequence because 2 + 2 < 5. %e A379033 30 = 2*3*5 is not in the sequence because 2 + 3 = 5. %p A379033 A379033:=proc(n) %p A379033 option remember; %p A379033 local a,i,j,P; %p A379033 if n=1 then %p A379033 8 %p A379033 else %p A379033 for a from procname(n-1)+1 do %p A379033 P:=[]; %p A379033 if NumberTheory:-Omega(a)=3 then %p A379033 for i in ifactors(a)[2] do %p A379033 j:=0; %p A379033 while j<i[2] do %p A379033 P:=[op(P),i[1]]; %p A379033 j:=j+1; %p A379033 od %p A379033 od; %p A379033 if P[1]+P[2]>P[3] then %p A379033 return a %p A379033 fi %p A379033 fi %p A379033 od %p A379033 fi %p A379033 end proc; %p A379033 seq(A379033(n),n=1..51); %Y A379033 Cf. A000040, A001222, A014612, A070088, A071142, A145784, A306678, A366398, A378819. %K A379033 nonn %O A379033 1,1 %A A379033 _Felix Huber_, Dec 24 2024