cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A379035 Number of intervals in the lattice of Schroeder paths of length 2*n.

This page as a plain text file.
%I A379035 #13 Dec 16 2024 10:47:49
%S A379035 1,3,20,201,2574,38740,654334,12050561,237383562,4935186778,
%T A379035 107233505624,2417430607946,56224895607144,1343171657532430,
%U A379035 32841495349026802,819503313717327041,20820095694805722362,537474654188020125882,14075078600122360679520,373373810133893669112710
%N A379035 Number of intervals in the lattice of Schroeder paths of length 2*n.
%C A379035 a(n) is the number of nested pairs of Schroeder paths of length 2*n.
%H A379035 Alois P. Heinz, <a href="/A379035/b379035.txt">Table of n, a(n) for n = 0..661</a>
%e A379035 The a(2) = 20 pairs of Schroeder paths are:
%e A379035 .                              __
%e A379035   ____   __/\   /\__   /\/\   /  \
%e A379035   ____   ____   ____   ____   ____
%e A379035 .
%e A379035    /\                   __     /\
%e A379035   /  \   __/\   /\/\   /  \   /  \
%e A379035   ____   __/\   __/\   __/\   __/\
%e A379035 .
%e A379035                  __     /\
%e A379035   /\__   /\/\   /  \   /  \   /\/\
%e A379035   /\__   /\__   /\__   /\__   /\/\
%e A379035 .
%e A379035    __     /\     __     /\     /\
%e A379035   /  \   /  \   /__\   /__\   //\\
%e A379035   /\/\   /\/\   /  \   /  \   /  \
%o A379035 (Python)
%o A379035 from collections import defaultdict
%o A379035 def a_gen(n): #generator of terms a(0) to a(n)
%o A379035     D = {(0,0):1}
%o A379035     for k in range(2*n+2):
%o A379035         D2 = defaultdict(int)
%o A379035         for i,j in D:
%o A379035             d = D[(i,j)]
%o A379035             mi,mj = (i-k)%2,(j-k)%2
%o A379035             for a in range(-mi,mi+1):
%o A379035                 for b in range(-mj,mj+1):
%o A379035                     if 0 <= i+a <= j+b <= 2*n-k+1:
%o A379035                         D2[(i+a,j+b)] += d
%o A379035         D = D2
%o A379035         if k%2==1:
%o A379035             yield D[(0,0)]
%Y A379035 Cf. A006318 (number of Schroeder paths), A005700 (number of intervals in the lattice of Dyck paths), A379034 (number of intervals in the lattice of Motzkin paths).
%K A379035 nonn
%O A379035 0,2
%A A379035 _Ludovic Schwob_, Dec 14 2024